Overview

The XACT Design
Manager

The XMake Program

The MemGen Program

X14 CT XACT-Performance

Utili
Reference T
Gui d e, The XNFCVT Program

Volume 1 —

Index

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Printed in U.S.A.

XACT Reference Guide

$7XILINX® , XACT, XC2064, XC3090, XC4005, and XC-DS501 are registered trademarks of Xilinx. All XC-prefix
product designations, XACT-Performance, XAPP, X-BLOX, XChecker, XDM, XDS, XEPLD, XFT, XPP, XSI, BITA,
Configurable Logic Cell, CLC, Dual Block, FastCLK, HardWire, LCA, Logic Cell, LogicProfessor, MicroVia,
PLUSASM, UIM, VectorMaze, and ZERO+ are trademarks of Xilinx. The Programmable Logic Company and The
Programmable Gate Array Company are service marks of Xilinx.

IBMis a registered trademark and PC/AT, PC/XT, PS/2 and Micro Channel are trademarks of International Business
Machines Corporation. DASH, Data I/O and FutureNet are registered trademarks and ABEL, ABEL-HDL and ABEL-
PLA are trademarks of Data I/O Corporation. SimuCad and Silos are registered trademarks and P-Silos and P/C-
Silos are trademarks of SimuCad Corporation. Microsoft is a registered trademark and MS-DOS is a trademark of
Microsoft Corporation. Centronics is a registered trademark of Centronics Data Computer Corporation. PAL and
PALASM are registered trademarks of Advanced Micro Devices, Inc. UNIX is a trademark of AT&T Technologies,
Inc. CUPL is a trademark of Logical Devices, Inc. Apollo and AEGIS are registered trademarks of Hewilett-Packard
Corporation. Mentor and IDEA are registered trademarks and NETED, Design Architect, QuickSim, QuickSim I,
and EXPAND are trademarks of Mentor Graphics, Inc. Sun is a registered trademark of Sun Microsystems, Inc.
SCHEMA I+ and SCHEMA Il are trademarks of Omation Corporation. OrCAD is a registered trademark of OrCAD
Systems Corporation. Viewlogic, Viewsim, and Viewdraw are registered trademarks of Viewlogic Systems, Inc.
CASE Technology is a trademark of CASE Technology, a division of the Teradyne Electronic Design Automation
Group. DECstation is a trademark of Digital Equipment Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Verilog is a registered trademark of Cadence Design Systems, Inc.

Xilinx does not assume any liability arising out of the application or use of any product described herein; nor does
it convey any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves
the right to make changes, at any time, in order to improve reliability, function or design and to supply the best
product possible. Xilinx, Inc. cannot assume responsibility for the use of any circuitry described herein other than
circuitry entirely embodied in its products. Xilinx products are protected under at least the following U.S. patent:
5,224,056. Xilinx, Inc. does not represent that Xilinx products are free from patent infringement or from any other
third-party right. Xilinx assumes no obligation to correct any errors contained herein or to advise any user of this
text of any correction if such be made. Xilinx will not be liable for the accuracy or correctness of any engineering
or software or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the appropriate Xilinx officer is prohibited.

XACT Development System

Table of Contents

XACT Reference Guide OVEIVIEWoviiiiiiiieeennanannnna.,
Typographical Conventionscvviireueriiiiinnnennnnnn.,
TheDesign FIoWuuuutiiiiit ittt
Functional Sections of the XACT Reference Guide

Volume 1 — Design Entry and Conversioncouvuuunn...
Volume 2 — Design Implementationccoounnnn.....
Volume 3 — Design Verificationooviiiio.. ..
Other Xilinx Manualsuuiiiiiininiiiiiiineeee e,

The XACT Design Manageroouoeeeviineeenneneeeemmnnnnnnnnnn.
Online HElpcoiininniiiiiiii i e e
TheProgram List File oo,
Using XDMonaPC i i i i e e
Using XDM ona Workstationouuuuuunnnnnneinnnnnnnnnnnn..

About X-Windows and Graphic User Interfaces
Mouse Configurationc.oiiiiiiiiiii i e

The Graphical Interfacecciiviiiiiiiiiiii i,
The Command Line Interface O
The XDM MENUttt ittt ittt ettt e
The Design Entry Menucouuiiuiiiieiniinnineeneeannnn.
The Translate Menu ..ottt innnennnns

The Fitter Menu (XC7200 and XC73000nly)coovveveeeennnnn...
TheVerifyMenuottt i
The Utilities MenUoiiuiiiniiit ittt et e,

°

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01)

1-1
1-1

1-3

- e e
|
[« N T N)

—
| |
O 00 N 3

1-11
1-12
1-12
1-12
1-14
1-16
1-18
1-18
1-18
1-19
1-19
1-19
1-23
1-24
1-26
1-29

XACT Reference Guide

The Profille MenU . .. oot iiiieiit et iieiiniieieannesasnanansnonss 1-32
The XMaKe PrOZIam vvveiiitrneitnenantensnnneseeeeeeeeeeananns 1-35
Using XMake fromthe XDMMenucooviiiiiinininineninn... 1-35
Using XMake from the SystemPromptcoviii... 1-36
XMake Command Line Usagecoviiiiiiiinrtinernnreneaennseenns 1-36
) =< SR 1-37
Input Filesooiinniiiniii ittt 1-37
Output Filesottt 1-38
OPLONS . . .vevrteeeeerennesanseesannesssnanseeeessssnneannsnnns 1-39
—a Use map-then-merge Strategycceeeeeennnnnnniacennnn. 1-39
—b Perform X-BLOX Optimizationcoeeeeeruneneecnnnnnenn. 1-40

—f Use map-FILE=-then-merge Strategyccceoveeeennnennn 1-40
-g Generate MAK File/Do Not Process Designoooeinnnt. 1-40

—i Use APR/PPRGuide Filecoiiiiiiiiiiniiiiinnn e 1-40

-] UseOldLibraryOnlycvvviiiiiiiiennnnnnnnnnnennnnens 1-41
—-m Make Placedand RoutedDesignccoviiiiiiiiininnenn 1-41
-n StoptoReview DRCo 1-41
—0 Direct Qutput to SCTEENttt eeiiiii et 1-41
—p Use Specified Part Typeoovvnenneneinetiiieiiiiineanenns 1-41

—r Re-Execute All Commands to Translate Design 1-41

—t Use merge-then-map Strategycccteeernniiiinnannnnann. 1-42
—vVerboseMode..................: 1-42
—x XNF Only (Interface to Third-Party Schematics) 1-42
XMakeDesign FIow vtiiiiiiiiii ittt 1-43
. 7N < 55 = 1-46
A Simple MAKFile Examplecooooiiiiiiiiiiiiiiinn, 1-46

A Complete MAK File Exampleccvviiiiiiiiiiiannnn, 1-49
Macrosinthe MAKFIlEooiiiit ittt ittt cia e 1-50
Error Messages and Recovery Techniquesoooviiiiinnen.. 1-51
Warning Messages and Recovery Techniquescooiniiee..n. 1-58

i XACT Development System

Syntax ...

memory_depth= Number of Words in Memory .
parttype= Target LCA Device
type= Memory Typecvuun...
word_width= Number of Bits per Memory Word
=b BusNotation
-0 OrCAD/SDT Symbol
-v Viewlogic Viewdraw Symbol
logfile MemGen Log File Name

XACT-Performance Utility
Defining Timing Requirements Using Groups
Understanding the Basics
Using Predefined Groups
Creating Arbitrary Groups Using TNMs
Creating New Groups from Existing Groups
Creating Groups by Pattern Matching

Table of Contents

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

........................

When Multiple Specifications Apply to the SamePath

Ignoring Selected Paths
Specifying Time Delay in TS Attributes
Sample Schematic Using End-Point Specifications

XACT Reference Guide

........................

........................

.......................

Lo
&2 22RXRXRXRRX223LYLY

Ll T O T O N e o T e e e i v T Y
|

iii

XACT Reference Guide

Default Specifications Inserted by PPRt 1-85
Defining Timing Requirements Using Path-Type Specifications 1-85
The Four BasicPath Typescooiiiiiiiiii i, 1-86
When Multiple Path-Type Specifications Apply to the Same Flip-Flop 1-92
The Forward Tracing Mechanism, 1-93
Combinational Delays and Timing Specifications on Clock-Related Paths 1-94
Specifying a Path-Type TS Attribute Delay in Terms of Another............ 1-94
Placing TSFIagscoiiiiiiiinririieerrtieneennnnneennnnnannn 1-94
Other Specification Parameterscovvvieeneeiiiiinnennnn. 1-100
Sample Schematic Using Path-Type Specifications 1-101
How are Path-Type and End-Point Specifications Different? 1-102
Syntax SUIMINATY ... vttvnniiieiiiiieeaanennnaaaaeaeseeteaneens 1-103
TNM A DULES oottt tie e cie oo eneeneeaeananeannnns 1-103
TIMEGRP Attributeso oottt iiii ittt iii e e eaeanaaneansns 1-103
TIMESPEC AtIIbULES vvevvteee ettt iiiiie i iiiien s 1-103
The XNFCVT PrOZIram ovttiiiiiiiiiiinannnneeennneneeennaneeaens 1-105
E3 7 117 S T 1-105
21 =3 PP 1-105
1) 1101 75:4 11 1-106
OULPULXNE . . .o e 1-106
(0710 1T R R R 1-106
—a DoNotUse an AKATlE ouovnenenananeneneneanaeanannen 1-106
—v Specifies the Versionof the XNFFilecoooiininnn. 1-106
Summary of Version Differencescciiiiiiiiiiiiiiiiiin 1-106
XNFCVT Program Processc.ccoiiieeeunnnenneennonnescennnens 1-108
The AKA File (Version2to Version 10nly)coiiiiiiiiin.t. 1-108
Error Messages and Recovery Techniquesccoiiiiinnns 1-109
13 1 72 20 Y 1-111
User-Created Hard Macroscovvvtiiiiiinteennnennnennneennecnnnsns 1-112
Designs with Elements from Previous Librarieso00. 1-113
Designs with Elements from the Unified Libraries 1-113

iv XACT Development System

Table of Contents

Xilinx-Created Hard Macrosovviinnnneinnnnnneennnnnnn.. 1-113
Designs with Elements from Previous Libraries 1-114
Designs with Elements from the Unified Libraries 1-114

Design FIowot e 1-114

Files ... 1-116
InputFiles i e 1-116
Output Files i i i e e 1-116

HowtoUse HM2RPMottt 1-117
Invoking HM2RPMttt 1-117
Creating Unified Libraries-Compatible XNFFile 1-118
Obtaining Helpcooiiuuiiiiii i 1-118

HM2RPM OPHONS . . . ooot ettt ettt e 1-118
=Helpall e 1-118
1-119

Error Messagesoiiniuiniiiietiiiiiiii i e 1-119

IndexX ... Index -1

XACT Reference Guide %

XACT Reference Guide

vi XACT Development System

Overview

XACT
Reference
Guide,
Volume 1

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Printed in U.S.A.

XACT Reference Guide

XACT Development System

XACT Reference Guide Overview

The XACT Reference Guide contains information on the software
programs and hardware peripherals found in the XACT Development
System. This guide is arranged into three volumes: Volume 1, “Design
Entry and Conversion”; Volume 2, “Design Implementation”; and
Volume 3, “Design Verification.” Generally, the chapters in these
volumes are organized in the following manner.

e A brief summary of program functions

e A syntax statement

* A review of the input files used and the output files generated by the

program

e A listing of the commands, options or parameters used by the

program

e Examples of how you can use the program

e Warning and error messages provided by the program with
suggested recovery procedures for the error messages when

appropriate

Typographical Conventions

The following conventions are used in this manual’s syntactical

statements:

Courier font
regular

Courier font
bold

italic font

(]

{1}

System messages or program files appear
in regular Courier font.

Literal commands that you must enter in
syntax statements are in bold Courier
font.

Variables that you replace in syntax
statements are in italic font.

Square brackets denote optional items or
parameters. However, in bus
specifications, such as bus [7:0], they are
required.

Braces enclose a list of items from
which you must choose one or more.

A vertical ellipsis indicates material that
has been omitted.

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-1

Volume 1 — Design Entry and Conversion

A horizontal ellipsis indicates that the
preceding can be repeated one or more
times.

| A vertical bar separates items in a list of
choices.

o This symbol denotes a carriage return.

The Design Flow

Figure 1-1 shows the three parts of the LCA™ design flow: design
entry, design implementation, and design verification.

XILINX DESIGN FLOW

‘ Design i
Design Entry Verification E

* Schematic Entry Back-Annotation « Functional and Timing
+ Text-Based Entry Simulation
« Static Timing Analysis

* In-Circuit Verification

Design i
Implementation

* Optimization ¢ Mapping * Placement
¢ Routing * Bitstream Generation

{

Xilinx
FPGA
X2079

Figure 1-1 The XACT Development System Design Flow

Design entry is the process that takes the design from concept to netlist.
There are a number of ways to enter a design, including schematics,
Boolean or state expressions, and hardware description languages
(HDLs). These entry methods require third-party tools that produce a
design file in its own netlist format.

The process of design implementation converts the third-party netlist to
Xilinx Netlist Format (XNF). It ultimately produces a configuration
bitstream for the target LCA device. It includes optimization and
mapping, placement and routing, and bitstream creation. Designs can
be implemented automatically or by using a combination of the
automatic and manual Xilinx Development System tools.

1-2 XACT Development System

Overview

Design verification includes simulation, static-timing analysis, and
in-circuit verification. Simulation is performed on third-party tools
supported by Xilinx. The input for these tools requires a tool-specific
translation of an XNF file. You can simulate an XNF file at any point or
convert to an XNF file. Static-timing analysis tools and in-circuit
verification tools are part of the Xilinx Development System. Consult
the Design Verification chapter in the XACT User Guide for a more
detailed description.

In some cases schematic simulation can be performed from the tool that
created the design. For these tools, it is possible to simulate a design
without creating an XNF file. As a result, simulator input can be
another output of the design-entry tools.

Functional Sections of the XACT Reference Guide

The XACT Reference Guide provides detailed information about
converting, implementing, and verifying designs in the XACT
environment. Check the program chapters for information on what
program works with each family of LCA device. The following is a
brief overview of the contents and organization of the XACT Reference
Guide.

Volume 1 — Design Entry and Conversion

XACT Reference Guide

Overview

The Overview provides generic descriptions of reference guide chapter
structure, the typographical conventions used, a design flow summary,
and descriptions of the programs in the XACT Development System.

XACT Design Manager (XDM)
XDM is the user interface shared by all XACT development programs.

XMake

XMake automatically converts a schematic design file into LCA and
BIT files.

MemGen

MemGen creates RAMs or ROMs of any size for use in XC4000
designs.

Volume 1 — Design Entry and Conversion

XACT-Performance Utility

XACT-Performance™ specifies timing requirements on a schematic for
any family (XC3000A/L, XC3100A, XC4000A/H) that PPR uses.

XNFCVT
XNFCVT converts an XNF netlist from Version 5 to Version 4, 2, or 1.

HM2RPM
HM2PRM converts hard macros to relationally placed macros (RPMs).

Volume 2 — Design implementation

Overview

The Overview provides generic descriptions of reference guide chapter
structure, the typographical conventions used, a design flow summary,
and descriptions of the programs in the XACT Development System.

XNFMerge

XNFMerge merges XNF and MAP files together to form a single XNF
file.

XNFPrep

XNFPrep performs a design rule check (DRC) and removes unused and
redundant logic from a flattened XNF file. It also checks the syntax of
the XACT-Performance parameters found in the design and prepares
delay information for PPR path analysis.

XNFMAP

XNFMAP maps the logic defined by an XNF file into LCA elements
such as CLBs, IOBs, and TBUFs.

MAP2LCA
MAP2LCA translates a MAP file into an LCA file for input into APR.

APR (Automatic Place and Route)

APR places and routes XC2000, XC2000L, XC3000, and XC3100
designs.

XACT Development System

Overview

PPR (Partition, Place and Route)

PPR partitions, places, and routes XC3000A/L, XC3100A, XC4000,
and XC4000A/H designs.

MakeBits
MakeBits creates a configuration bitstream for the LCA design.

MakePROM

MakePROM converts a configuration bitstream (BIT) file into a file
that can be downloaded to a PROM. MakePROM also combines
multiple BIT files for use in a daisy chain of LCA devices.

Volume 3 — Design Verification

XACT Reference Guide

Overview

The Overview provides generic descriptions of reference guide chapter
structure, the typographical conventions used, a design flow summary,
and descriptions of the programs in the XACT Development System.

XDelay

XDelay is a static-timing analyzer that reports detailed timing
information about the design and can be used for overall performance
analysis.

LCA2XNF

LCA2XNF converts an LCA file to a Xilinx Netlist Format (XNF) file
for use in timing simulation.

XNFBA

XNFBA creates an XNF file containing delay information and using
the original schematic net names.

XACT Design Editor (XDE)

XDE allows the designer to manually edit or analyze an LCA design.
XDE can also invoke MakeBits and MakePROM.

Volume 1 — Design Entry and Conversion

Other Xilinx Manuals

Other Xilinx manuals that you can refer to for more information are the
following:

XACT User Guide

XACT Reference Guide, 3-Volume Set
XACT Libraries Guide

Xilinx Hardware & Peripherals Guide
XEPLD Design Guide

XEPLD Reference Guide
Xilinx-Synopsys Interface User Guide
Xilinx ABEL Interface User Guide
Viewlogic Interface User Guide
OrCAD Interface User Guide

Mentor V8 Interface User Guide

The Programmable Logic Data Book

XACT Development System

The XACT Design
Manager

XACT
Reference
Guide,
Volume 1

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Printed in U.S.A.

XACT Reference Guide

XACT Development System

The XACT Design Manager

Online Help

This Program is Compatible with the Families Indicated.

M XC2000 M XC3100 M XC3100A M XC4000H
M XC2000L M XC3000A M XC4000 M XC7200
M XC3000 N XC3000L ® Xc4000A [XC7300

XDM, the XACT Design Manager, is the common user interface shared
by all FPGA and EPLD development packages. It serves as a
menu-driven shell for executing all XACT development operations,
including the XEPLD Integrator and related interfaces.

To use XDM effectively, you should be familiar with its features. The
following subsections describe important XDM features.

e “Online Help” describes how to use the online help facility.
e “The Program List File” describes the proglist.xdm file.

e “Running XMake in XDM” describes how to run the XMake
program from within XDM.

e “Using XDM on the PC” describes how to run XDM on the PC and
explains the XDM opening screen.

e “Using XDM on a Workstation” describes how to run XDM on a
workstation and explains the XDM opening screen.

e “XDM User Interface” describes how to execute commands from
the graphical user interface and the command line.

e “The XDM Menu” briefly describes the menus and associated
commands. For more details, refer to the appropriate chapter in the
XACT Reference Guide for detailed descriptions of syntax, options,
and error messages for specific programs.

XDM includes online help for each menu, program, and command
option. For example, you can display help information about the
Translate menu, about the XMake program located in the Translate
menu, or about the XMake —x option.

There are two methods for displaying help: XDM command-line entry
and menu selection for any topic represented in the Design Manager
menu structure. To use online help from the command line, use the
following format:

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-7

Volume 1 — Design Entry and Conversion

The Program List File
XDM maintains a program list file (proglist.xdm) to minimize the time

required for start up. The text file contains a list of XDM-supported
programs (executable files) installed on your system.

help topic-option

Using this method, the fopic can be either a menu name, a program, or
command name. You can request information about a specific option by
typing a “~” and the option immediately after the topic. Press J to
display the online help information. Press F1 to exit the online help
display.

On PCs, selecting help from a menu requires that you first highlight the
topic with the mouse. With the menu item highlighted, press the F1 key
to access the corresponding help screen. Press F1 again to exit the help
display.

Pressing the F1 key on a highlighted command is called
context-sensitive help. While command line entry for help is supported
on all platforms, only PCs support context-sensitive help.

To exit from the online help on workstations, press F1.

When generating proglist.xdm, XDM attempts to write it in the
following order:

1. To the directory specified by the XACTUSER environment
variable, if defined.

2. To the “data” subdirectory of the directory specified by the
XACT environment variable, for example, C:\XACT\DATA on
PCs.

3. To the current working directory.

When reading proglist.xdm, XDM searches for the file in the following
order.

1. In the current working directory.

2. In the directory specified by the XACTUSER environment
variable, if defined.

3. In the “data” subdirectory of the directory specified by the XACT
environment variable, for example, C:\XACT\DATA on PCs.

XACTUSER is a user-defined environment variable that XDM uses
only if it is defined.

XACT Development System

XDM

Using XDM on a PC

The XDM executable file is located in the XACT directory (the default
is C:\XACT), which should be included in the PATH specified in your
autoexec.bat file. To start XDM at your operating system prompt, enter
this command:

xdm

When you enter this command, the Design Manager software loads into
memory, reads the proglist.xdm file to set up your menus, and displays
a message similar to the one below.

Reading c:\xact\data\proglist.xdm...

NOT& If proglist.xdm is missing, as in the very first invocation of XDM, XDM
automatically generates this file using the ScanDisk command. See the
XDM Menu section for a description of the ScanDisk command.

After a short while, another message similar to the one below displays.
Reading c:\xact\data\xdm.pro...

This message means XDM is reading the profile information in the
xdm.pro file to configure the Design Manager software as well as the
graphics, I/O ports, and any other configurable system parameters. You
can customize the xdm.pro file. Refer to the information in the Profile
menu section.

When XDM is completely loaded, your monitor displays the XDM
main screen. The main screen consists of a menu bar at the top, a
command line at the bottom, a status/settings area above the command
line, a mouse cursor, and a logo with software version information in
the center, as shown in Figure 1-2.

XACT Reference Guide 1-9

Volume 1 — Design Entry and Conversion

DesignEntry Translate PlaceRoute Verify Utilities Profile Quit

L_—_—————————J

XILINX®
Xacr:

Copyright 1989-1993 Xilinx Inc.
386:D0S-Extender 4.1 - Copyright (C) 1986-1993 Phar Lap Software, Inc.

RS

Press F1 for Help

Family: XC3000A

Directory: D:\XACT q
Part: InDesign

Mouse: MS Mouse

Command Line

Figure 1-2 XACT Design Manager Opening Screen
(PC-type Systems)

Descriptions of the identified parts of the XDM Opening Screen
follow:

e Menu Bar is at the top of the Main Screen and contains commands
and utilities available from XDM. Clicking on the Menu Bar brings
up the various menu options.

e Main Screen is below the Menu Bar and contains the version
number and copyright information for XDM. In the lower-left
corner of the Main Screen are four Setting fields: Family, Directory,
Part, and Mouse. To change these settings, place the cursor over the
field and click the left button. A pop-up menu displays a list of
items that you can select.

1-10 XACT Development System

XDM

— Family specifies the family of Xilinx devices that is the target for
your design. For example, to choose EPLD devices, select
XC7200 or XC7300. Your selection in this field determines
which commands are available from the menu. For example, the
PLUSASM command appears on the Translate menu only if you
choose XC7200 or XC7300.

— Directory specifies the design directory in which you are
working.

— Part specifies the part that is the target of your design, for
example, XC7236-30PC44.

— Mouse specifies the mouse mode (or connection port on the PC).

e Command Line is where you enter commands via the keyboard.
You can re-execute a command by pressing . when the desired
command appears at the Cmd: prompt. Use the keyboard arrow keys
to cycle through previously executed commands. You can enter
commands when the cursor is blinking on the command line. If the
cursor does not appear, click on the Command line with the mouse.
Use the backspace and arrow keys to edit commands on the
Command line.

To quit XDM and return to DOS, select Quit on the menu bar or enter
the quit command on the command line at the bottom of the XDM
screen.

You can temporarily return to DOS without quitting XDM by using the
DOS command in the Utilities menu. See the command description
later in this chapter.

If your menus do not display all of the commands included with your
Xilinx software product, check your autoexec.bat file to verify that
your PATH is properly set to include the executable directory paths
specified during installation. For example,

PATH ...;drive:\XACT;...

If your PATH is not present, modify your autoexec.bat file to include
the missing path, then reboot your system. You might also have to
update your proglist.xdm file. To do this, start XDM and select the
ScanDisk command from the Utilities menu.

Using XDM on a Workstation

You must have X-Windows running on your workstation before you
start XDM. This subsection briefly describes the X-Windows
environment and how to start XDM.

XACT Reference Guide 1-11

Volume 1 — Design Entry and Conversion

You should not start XDM in the background mode. XDM calls some
programs that go into an interactive mode and can cause XDM to halt
if it is running in background mode.

About X-Windows and Graphic User Interfaces

Xilinx software requires X-Windows to operate on a workstation. The
recommended graphic interface is Motif. X-Windows is an
industry-standard windowing environment developed by the
Massachusetts Institute of Technology (MIT). The appearance of the
windows, mechanisms used to manipulate windows, and the mouse
definition are part of Motif. X-Windows and Motif are available on
Apollo and Sun-4.

Xilinx software is also compatible with the Display Manager on Apollo
and Openlook on Sun-4.

Both X-Windows and the Motif window manager are configurable.
Configuration files control mouse operation, menu contents, screen
display, and window appearance. The .Xdefaults file controls the
X-Windows environment and the .mwmrc file controls the Motif
window manager. These files should be in your home directory.

There are some basic operations you should know that apply to most
configurations. The following paragraphs describe these operations.

Mouse Configuration

You can program the mouse buttons to start menus, select objects, and
select text. The modes of a mouse button can vary depending upon the
location of the cursor. Buttons operate differently if the cursor is
located in an X-terminal window, X-terminal banner or edge, or outside
an X-terminal window. Specific mouse button operation is dependent
upon your configuration.

Window Operations

You can easily modify the size and location of windows within the
X-Windows or Motif environment. You can start window operations
through menus or using accelerator keys. The basic window operations
are as follows:

e “Move” allows you to move the window to a different location on
the screen.

e “Size” allows you to alter the size of the window by clicking an
edge or corner of the window and dragging the cursor.

e “Iconify/Minimize” transforms the window into an icon. Double
clicking on the icon restores the window to its original size.

XACT Development System

XACT Reference Guide

XDM

e “Front” brings the window to the front of the display, overlapping
other open windows.

e “Back” sends the window to the back of the display; other open
windows overlap the window sent to the back.

e “Pop” toggles the window between the front and back of the
display. When you initially select Pop, the window comes to the
front.

e “Close” closes the window and removes it from the active display.

Window Buttons

Many window configurations are defined with three buttons in the
banner of the window. These buttons are menu select, iconify and
maximize. The menu select is in the top left corner; the window iconify
and maximize are in the top right corner.

Window Accelerator Keys

You can execute many window operations with accelerators keys.
Typical window operations are window resize, move, and front. You
can define these window operations with Esc, Control, or meta (Q)
keys, or any other key in your .XDefaults file. For example, you might
define Esc v to scroll down a screen.

Using the mouse, resizing a window is a click-and-drag operation on
the window edge or corner; moving a window is a click-and-drag
operation on the window banner; bringing a window to the front is a
click operation on the banner.

Active Window

The active window is usually highlighted to allow easy identification.
Xilinx software uses the focus method that is defined in the
X-Windows environment.

Edit Functions

Several keys and key sequences that work in the X-Window
environment also apply to the Xilinx software. For example, you can
use the up/down keys for command recall. Other key sequences are as
follows:

e Control-U erases an entire command line
e Backspace or Control-H erases the character to the left of the cursor

e Delete erases the character to the right of the cursor, except at the
end of the line, when it erases the last character on the line

Volume 1 — Design Entry and Conversion

¢ F1 or Help brings up on-line help.
Starting XDM

Enter the following command from the operating system prompt:
XDM
Use all capital letters when you type ‘XDM’ at the prompt.

After you enter the XDM command, the Design Manager software
loads into memory and reads the proglist.xdm file to set up your menus.
While this is being done, the following message displays:

Reading proglist.xdm...

If proglist.xdm is missing, as it will be in the very first invocation of
XDM, XDM automatically generates this file, using the ScanDisk
command. See the ScanDisk command description in “The XDM
Menu” section in this chapter.

After a short while, this message appears:
Reading xdm.pro...

When XDM is completely loaded, the XDM opening screen displays.
See Figure 1-3 for an illustration of the XDM opening screen. The
opening screen consists of four areas: Command Window, Menu Bar,
Main Screen, and Settings.

¢ Command Window consists of three areas: Status Line, Instruction
Line, and Command Line.

— The top line is the Status Line, which displays responses to the
commands you enter (either with the keyboard or the menus) and
a history of commands you have entered at the Command Line.

— The middle line is the Instruction Line, which tells you to press
any key to continue whenever a program or command completes
execution. Pressing any key at this time brings back the original
XDM window.

— The bottom line is the Command Line at which you enter
commands via the keyboard. You can re-execute a command by
pressing Return when the desired command appears at the Cmd:
prompt. Use the keyboard arrow keys to cycle through previously
executed commands. You can enter commands when the cursor is
blinking on the command line. If the cursor does not appear, click
on the Command line with the mouse. Use the backspace and
arrow keys to edit commands on the Command Line.

1-14 XACT Development System

Command Window

Command Line Menu Bar Instruction Line

Status Line I

7

?El 7 lm AN T

Cmd:

& XILINX®
XACT®

Design Manager
Version: 5.0.0
Copyright 1989-1993 Xilinx Inc.

Family: XC3000A
Directory: /export/home/antigua/ericw/xact
Part: InDesign
Mouse: X Windows mouse

[
IE.: imt:yrrtamlatlﬁlaeoloutc rifyjutilit iosﬁ:o file|Quit|
[~ .

o

Main Screen
Settings
Figure 1-3 XDM Opening Screen (Workstations)

XACT Reference Guide

XDM

Volume 1 — Design Entry and Conversion

e Menu Bar is below the Command Window and contains commands
and utilities available from XDM. Clicking on the menu bar brings
up the various menu options.

e Main Screen is below the Menu Bar and contains the version
number and copyright information for XDM. When XDM runs a
program, the Main Screen is replaced by a text window where
standard output from the program displays. When the program
completes, XDM waits for confirmation before removing the text
screen and continuing.

In the lower-left corner of the Main Screen are four Setting fields:
Family, Directory, Part, and Mouse. To change these settings, place
the cursor over the field and click the left button. A pop-up menu
displays a list of items that you can select.

— Family specifies the family of Xilinx devices that is the target for
your design. For example, to choose EPLD devices, select
XC7200 or XC7300. Your selection in this field determines
which commands are available from the menu. For example, the
PLUSASM command appears on the Translate menu only if you
choose XC7200 or XC7300.

- Directory specifies the design directory in which you are
working.

— Part specifies the part that is the target of your design, for
example, XC7236-30PC44.

— Mouse specifies the mouse mode.

To quit XDM and return to the operating system prompt, select Quit
from the menu bar or enter “‘quit” on the Command Line.

When running your Xilinx software in X-Windows, you can return to a
system command prompt by simply opening another window.

If your menus do not display all of the commands included with your
Xilinx software product, verify that your path variable is set correctly. It
should include the directory in which the Xilinx tools reside. The
proglist.xdm file might also need updating. To update this file use the
ScanDisk command from the Utilities menu.

Running XMake within XDM

The most important feature of XDM is the capability of running the
XMake program. XMake uses schematic-to-XNF translators and the
necessary design implementation tools to automatically convert a
design file into a bitstream file. This is the most automated way to
implement your design. To run XMake, follow the steps below.

XACT Development System

XACT Reference Guide

XDM

XMake supports only FPGA implementation flows. An equivalent
capability, called XEMake, also exists in XDM to support EPLD design
Sflows (XC7000 family).

OrCAD users must run XDRAFT before entering the schematic and
selecting XMake.

1. Select the XMake command from the Translate Menu.

2. Select the XMake options you want from the displayed menu.
Available options are dependent upon the current Family settings.

Unless the current design uses Unified Libraries, you must select the -1
option in XMake. This option automatically selects the
‘Use-old-library-only’ option when starting the translators.

3. Select Done.
4. Select the input file from the displayed menu.

The files in this menu vary, depending on the options you

selected in step 2. For example, if you selected the —x option, the
menu only contains XNF files. If you did not select the —x or —g
option, the menu contains all recognized schematic and MAK
files.

When reprocessing a design that you have modified, you should
select the corresponding MAK file. However, if any modules
have been added or deleted, you must select the original design
file as input, so that XMake generates a new MAK file.

5. At this point, XDM displays the target menu. Select the item that
describes the stage at which you want XMake to stop.

XMake starts translators and design implementation tools with the
current option settings for each tool. Use the Options command from
the Profile menu to examine and select options for each tool (program).

There are a number of options that XMake does or does not use,
regardless of the current setting, when processing a design. This
JSeature ensures that there are no errors caused by the exclusion or
inclusion of such options, in the context of automatic, continuous
design flow.

For example, XMake always uses the —b option for WIR2XNF, and the
—w option for APR, and always ignores the output_xnf option for
ABL2XNF.

Volume 1 — Design Entry and Conversion

XDM User Interface

There are two methods for executing XDM commands. These methods
are the same for PCs and workstations. You can use the mouse pointer
to open a menu and select the desired command; or, you can enter the
command and options on the Command Line.

With each method, messages from commands appear in the window
from which you started XDM. While a command is running, the cursor
takes the shape of a clock. When the command finishes, a beep sounds,
and the cursor changes back to its original form. (You can select the
cursor type using the Cursor command in the Profile menu.)

The Graphical Interface

IMPORTANT

Using the graphical interface to execute commands or programs
requires that you first know where that command resides in the XACT
Design Manager menu structure.

You also need to know to which operations the mouse buttons are set.
The following usage descriptions assume that the mouse is set to the
default button configuration. The default mouse settings is: Select for
B (left button), Menu for B2 (middle button), and Done for B3 (right
button).

To open a menu, position the cursor on the menu you want to open and
click the left mouse button. On PCs, you can also recall the last
command selected by pointing anywhere except the menu titles and
pressing the middle button.

The Command Line Interface

You can use the keyboard to enter commands that are shown in the
menus. Commands with two or more capital letters indicate a keyboard
shortcut; commands that appear in all capital letters have no keyboard
shortcut.

For example, the Utilities menu displays a command, DirClean. Using
the keyboard, you could enter this command in one of three ways;
DirClean, DirC, or DC (followed by a .J).

Keyboard shortcuts are not case sensitive. In the aforementioned
example, you could enter dc, Dc, or dC to run DirClean.

On PCs, when you open either the Utilities or Profile menu, the
commands display with some or all of the characters highlighted. The
highlighted characters represent an additional shortcut for entering the
command on the command line.

XACT Development System

XDM

The XDM Menu

This section includes general information about the XDM menus.
Depending on which Xilinx software you have installed, your system
might display fewer menus than are described here.

After a general description of the possible menus, more detailed
information is provided for the Utilities and Profile menus.

On PCs, if your menus do not display all of the commands included
with your Xilinx software product, check that your path environment
variable is set correctly in your autoexec.bat file. Typically, it should
include “C\XACT” — the directory where the Xilinx tools typically
reside. If it is not present, modify your autoexec.bat file to include it,
then reboot your system. The proglist.xdm file might also need
updating. Do this by starting XDM and selecting ScanDisk from the
Utilities menu.

On workstations, if your menus do not display all of the commands
included with your Xilinx software product, verify that your path
variable is set correctly. It should include the directory in which the
Xilinx tools reside. The proglist.xdm file may also need to be updated.
Do this by invoking XDM and selecting ScanDisk from the Utilities
menu.

The Design Entry Menu

This menu contains a listing of the design entry software packages
installed in your system. Supported packages include Workview,
OrCAD, XABEL, and SYMGEN (Xilinx’s symbol generator).

SYMGEN

This tool translates an XSF file into a symbol file. SYMGEN can
generate symbols in text, OrCAD, Viewlogic, and Cadence formats.

The Translate Menu

XACT Reference Guide

This menu contains the translation programs that produce an XNF or
LCA design file (though not all of the programs produce these files
directly). The Xilinx device family and implementation method you use
determine which translation programs appear on the menu, and whether
your resulting file type is XNF or LCA. This menu contains all of the
translations required to support your design entry package.

In particular, the XMake program (XEMake for XC7200 and XC7300
family) is useful for automatically translating and implementing your
design. XMake and XEMake eliminate the need to manually run
individual tools.

Volume 1 — Design Entry and Conversion

XMake

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

Xmake uses the necessary schematic-to-XNF translation programs and
appropriate design implementation tools in succession to automatically
convert a design file into a BIT file. At the beginning of this process it
generates a MAK file. A MAK file contains the information about how
a design is to be processed. You can use the MAK file for any
subsequent invocations of XMake for the same design. Running
XMake within XDM is the most automated way to implement your
design. Refer to the Running XMake within XDM section for more
information. For details about the XMake program, refer to the XMake
Program chapter in this reference guide.

XEMake

Supports XC7200/XC7300.

XEMake is the EPLD version of XMake, which supports both
schematic and behavioral (equation-file) designs. XEMake automates
the schematic or equation-file integration process by running the proper
EPLD tools in succession. XEMake accepts OrCAD, Viewlogic, PLD
files, PDS files, MAK files (generated from XEMake only), or XNF
files and integrates it into a database file (VMH/VMD). Optionally,
you can specify XEMake to create an Intel HEX programming file
(PRG).

ABL2XNF

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

This program translates ABL files to an XNF format.

ABL2PLD
Supports XC7200/XC7300

This program creates a PLD file from an Abel file and runs PLUSASM
to create a bitmap file. Optionally, it can run FITEQN if your Able file
is a top-level file.

Annotate (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A/L, XC4000/XC4000A/H, XC7200/XC7300.

This OrCAD command updates reference designators in OrCAD
schematics in the order in which they were placed on the schematic as
the first step in preparing an ORCAD schematic for functional

XACT Development System

XACT Reference Guide

XDM

simulation. Annotate can assign new reference designators to all parts
including manually edited parts, to ensure that they are unique.

CleanUp (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

This OrCAD command cleans up overlapping objects in OrCAD
schematics.

HM2RPM

Supports XC4000/XC4000A/H.

This command translates a Hard Macro into a Relationally Placed
Macro. Hard Macros are not supported by PPR versions later than
V1.3.1, and must be converted into Relationally Placed Macros for
newer versions of PPR.

INET (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

This OrCAD command reads the root schematic and any other related
schematics and converts them into netlist files (INF files) as the second
step in preparing an OrCAD schematic for functional simulation.

JED2PLD
Supports XC7200/XC7300.

This program imports a JEDEC file and uses it to define the functional
behavior of a PLD component in a schematic. First, it translates the
JEDEC file to a PLUSASM equation file (with a PLD extension).
Then, it starts the PLUSASM assembler, which assembles the equation
file into a bitmap. You can view and edit the PLUSASM equation file.

MAP2LCA

Supports XC2000/XC2000L, XC3000/XC3100.

MAP2LCA translates a MAP file into an LCA file. You can edit this
LCA file in the XACT Design Editor or use APR to automatically
place and route the file.

MemGen

Supports XC4000/XC4000A/H.

Volume 1 — Design Entry and Conversion

MemGen is the Xilinx RAM and ROM memory compiler for the
XC4000 family of devices. Given the type of memory and its width,
depth, and contents, MemGen creates the appropriate XNF file to
implement the memory. It can also create a schematic symbol for your
memory function.

PinSave

Supports XC7200/XC7300.

This command saves the pin allocation information into a VMF file.
Use this command after a successful integration of your design. If you
set the Pinfreeze option of either the FITEQN or FITNET commands to
on, the Integrator, during subsequent iterations of your design, assigns
the pins to the same locations indicated in the VMF file. You can edit
the VMF file to alter pin assignments.

PLUSASM
Supports XC7200/XC7300.

PLUSASM assembles a PLUSASM equation file that describes a PLD
used in a schematic design. PLUSASM assembles the source file you
select and generates a component bitmap file and a report. FITNET on
the Fitter menu uses the Component bitmap files.

SDT2XNF (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

SDT2XNF generates an XNF file from an OrCAD netlist file.

SYN2XNF (Synopsys Interface Only)

Supports XC3000/XC3100, XC3000A/L, XC3100A,
XC4000/XC4000A/H.

SYN2XNF generates an XNF file from a Synopsys SEDIF or SXNF
file.

WIR2XNF (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

WIR2XNF translates a WIR file into an XNF file.

X-BLOX
Supports XC3000A/L, XC3100A, XC4000/XC4000A/H.

XACT Development System

XDM

X-BLOX performs data path and architectural synthesis. X-BLOX
generates an XNF file, with an XG extension, from a schematic or
netlist drawn with X-BLOX modules.

XDRAFT (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XDRAFT sets up your SDT.CFG in the current directory (OrCAD SDT
configuration file) and/or VST.CFG (OrCAD VST configuration file)
to run with the Xilinx OrCAD environment. You must run XDRAFT
once for each design before running XMake.

XNFMAP
Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L.

This program maps the logic defined in the XNF file into the
architectural resources of the LCA device. XNFMAP reads the XTF
file and decides which gates to combine into a CLB. XNFMAP first
maps the logic that has been assigned to specifica locations in the
schematic.

XNFMerge

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XNFMerge combines multiple XNF files to create a single flattened
(non-hierarchical) design file. It also generates a report file
(design.mrg) listing the files read; the signals that were bound together;
and the number of signals, primitive symbols, and unresolved symbols
in the output design file.

XNFPrep

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

XNFPrep performs a design rule check (DRC) and removes unused and
redundant logic from a flattened XNF file. It also checks the syntax of
the X ACT-Performance parameters found in the design and prepares
delay information for PPR path analysis.

The PlaceRoute Menu

This menu contains commands that run the XACT Design
Implementation algorithms that place CLBs and IOBs in the LCA and
route all of the required connections. For XC3000A/L and XC4000

XACT Reference Guide 1-23

Volume 1 — Design Entry and Conversion

designs, PPR also partitions the logic in the design file before placing
and routing.

APR
Supports XC2000/XC2000L, XC3000/XC3100.

APR reads an input design map file, places the CLBs and IOBs in a
specific part, then routes the design. APR produces an LCA file.

APRLoop
Supports XC2000/XC2000L, XC3000/XC3100.

APRLoop allows you to perform multiple iterations of the APR
software. This allows you to evaluate several LCA files and select the
best solution. When you select APRLoop, the program prompts you to
specify the number of iterations you want it to perform. For more
information, refer to the APR chapter in the XACT Reference Guide.

PPR
Supports XC3000A/L, XC3100A, XC4000, XC4000A/H.

PPR reads an XTF file (generated by XNFPrep) for XC4000 and
XC4000A/H designs, maps the logic into CLBs and IOBs, and places
and routes the design in a specific part. PPR also reads a MAP file
(generated by XNFMAP) for XC3000A/L and XC3100A designs, and
places and routes the design in a specific part. PPR produces an LCA
file.

XDE

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000, XC4000A/H.

XDE is the XACT Design Editor. XDE is a graphical representation of
an implemented design. Use XDE to manually modify your design.

The Fitter Menu (XC7200 and XC7300 only)

This menu appears on the XDM menu bar only when you select an
EPLD device (XC7200 or XC7300) for the “Family” field. The
commands on this menu execute the XEPLD design implementation
algorithms that map the design onto the target EPLD device. For more
details about this menu, refer to the XEPLD User Guide.

XACT Development System

XACT Reference Guide

XDM

FITEQN
Supports XC7200/XC7300.

FITEQN integrates a behavioral design. The main equation file you
specify must follow the required PLUSASM file structure. The
equation file is processed by several XEPLD modules to produce a
database, VMD (only for XC7272), or VMH (all other EPLD devices).
From this database, you can produce a programming file to program the
device. You can also produce a timing simulation XNF file using
VMH2XNF and save the pinouts using the PinSave program. Use
MAKEPRG to generate an Intel HEX file or MAKEJED to generate a
JEDEC file.

This command produces several reports: Resource (RES), Mapping
(MAP), Pinlist (PIN), Partition (PAR), and Collapse/Logic
Optimization (LGC). FITEQN also produces a design_name.log file
and a behavioral design file, which contains partitioning and other
information, with the name design_name.eqn.

FITNET
Supports XC7200/XC7300.

This command integrates a schematic-based design. The input file is a
merged, flattened XNF file (XFF) from XNFMerge that is processed by
several XEPLD modules to produce a database. From this database, a
programming file can be produced to program the device. You can also
produce a timing simulation XNF file using VMH2XNF and save the
pinouts using the PinSave program. Use MAKEPRG to generate an
Intel HEX file or MAKEJED to generate a JEDEC file.

This command produces several reports: Resource (RES), Mapping
(MAP), Pinlist (PIN), Partition (PAR), and Collapse/Logic
Optimization (LGC). FITNET also produces a design_name.log file
and a behavioral design file, which contains partitioning and other
information, with the name design_name.eqn.

PALCONVT
Supports XC7200/XC7300.

This command creates a new behavioral design file from existing PAL
designs, which are input in the form of PDS or PLD files.

PALCONVT creates a PAL interconnect report (INT) that lists all the
signals used by all PALs and indicates any conflicts.

These PAL files can be PLUSASM files that you created with a text
editor, files from third-party design entry packages (like ABEL), or
JEDEC files that you convert with the JED2PLD command.

Volume 1 — Design Entry and Conversion

After using PALCONVT, choose a target device for your converted
design, then use FITEQN to integrate your design. Assuming that there
are no edits you want to make to the new PLD file, you can also choose
the “‘run FITEQN target” option.

The Verify Menu

The Verify menu provides a selection of programs associated with
design simulation and in-circuit verification. These selections include
all simulation and verification programs and all utility programs needed
to create the required file formats.

ASCTOVST (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

ASCTOVST converts an OrCAD Stimulus or Trace file from ASCII to
binary format and from binary to ASCII.
LCA2XNF

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

LCA2XNF translates an LCA file into a timing-annotated XNF file that
can be used to create a timing simulation file.
MakeBits

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

MakeBits creates a bitstream that can be downloaded into an LCA.

MAKEJED
Supports XC7200/XC7300 (except XC7272/XC7272A devices).

MAKEIJED creates a JEDEC file that you can use to program XEPLD
devices. This command prompts you for a signature, which you must
specify. A signature is a series of letters or numbers that indicates the
revision of the design. The device programmer reads the signature
allowing you to verify that the version is correct.

MAKEPRG
Supports XC7200/XC7300.

MAKEPRG creates a file in Intel HEX format that you can use to
program XEPLD devices. This command prompts you for a signature,

1-26 XACT Development System

XACT Reference Guide

XDM

which you must specify. A signature is a series of letters or numbers
that indicates the revision of the design.

MakePROM

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

MakePROM creates a PROM programming file from a configuration
BIT file. MakePROM also combines multiple BIT files for use in a
daisy chain of LCA devices.

ORCAD (VST)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

ORCAD places you in the OrCAD/ESP design environment where the
OrCAD VST simulator is located.

PROLINK

Supports XC7200/XC7300.

PROLINK starts the PROLINK interface software for controlling and
downloading HEX programming files (generated by MAKEPRG) to
the Xilinx DS120 device programmer.

VMH2XNF

Supports XC7200/XC7300.

VMH2XNF creates an XNF file with timing parameters for use in
timing simulation. The input file can be a VMH or VMD (from
XC7272) file.

VSM (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

VSM reads the model file produced by XNF2WIR and creates a
Viewsim wirelist (with a VSM extension) for functional and timing
simulation.

VSMUPD (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

VSMUPD updates the Viewsim VSM file to allow complete
back-annotation to the original schematic during timing simulation.

Volume 1 — Design Entry and Conversion

VSMUPD adds net-equivalent statements to the VSM file that enable
Viewsim to back-annotate more net values to the original schematic.
XSimMake

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XSimMake automatically prepares any design for either functional or
timing simulation. XSimMake is not available for Mentor Graphics
users.

XChecker

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

XChecker downloads, reads back, and verifies the configuration data,
and probes the internal logic states of FPGAs.

XDelay

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

XDelay is the static timing analyzer that reports detailed timing
information about the design, which you can use for overall
performance analysis.

XNFBA

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

XNFBA combines the pre-route XG/XFF file and the post-route XNF
file into a new file with pre-route names and post-route delays.
XNFCVT

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H.

XNFCVT converts an XNF netlist from Version 5 to Version 4, 2, 1.

XNF2VST (OrCAD Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XNF2VST creates an OrCAD VST simulation file from an XNF format
file.

1-28 XACT Development System

XDM

XNF2WIR (Viewlogic Interface Only)

Supports XC2000/XC2000L, XC3000/XC3100, XC3000A/L,
XC3100A, XC4000/XC4000A/H, XC7200/XC7300.

XNF2WIR uses an XNF file as input to create a WIR file that
Viewlogic’s VSM netlister program can read.

XPP

Supports 1736AMD, 1765AMD, XC1736, XC1736A, XC1718D,
XC1718L, XC1736D, XC1736L, XC1765D, XC1765L, XC17128X.

XPP allows you to program a Xilinx serial PROM device with the
DS112 programmer.

If you need more details about the commands listed in the Design Entry,
Translate, and Verify menus, consult the appropriate CAE User
Interface Guide.

The Utilities Menu

XACT Reference Guide

The Utilities menu provides several utility commands that let you
change working directories, see which versions of Xilinx-supported
software are installed on your system, view file contents, and use other
file management and system control features. The commands in the
Utilities menu are not related to the development software loaded in
your system,; they are the same regardless of your software
configuration.

Browse

This utility allows you to view, as a read-only document, any text file
from within XDM. After selecting Browse, you are prompted for a file
name. To browse through a file, select the file name from the menu or
enter it from the command line. Press F1 to return to XDM. If you want
XDM to start your own text viewing program when you select Browse,
you can set an environment variable to the name of the text-viewing
program. Consider the following PC example.

set BROWSE=LIST
Selecting Browse will call the LIST program with this setting.

Browsing a design within XDM can be slow on a PC and should only
be used if you do not have a text editor on your PC. Browse has a
maximum display line limit of 800 lines.

Volume 1 — Design Entry and Conversion

DirClean

This utility helps you manage your design directories by eliminating
unwanted files that the design translation process creates. To use
DirClean, select any files you want to remove from the current
directory; XDM highlights the selected files. When you complete your
selections, click on Done or press .J to execute their removal.

Directory

The Directory command allows you to move easily through your disk
directory structure. You can select the current directory that XDM reads
from and writes to. A menu appears displaying the current directory,
the parent directory, and all subdirectories of the current directory. Each
time you select a new current directory, the menu changes to reflect the
new parent directory and subdirectories.

To change disk drives on PCs, enter the following command at the
command line.

dir drive:

Where drive is the disk drive you want as your current drive.

DOS (PC Only)

This command is a gateway to the DOS operating system environment.
You can use it on the command line either alone or as a prefix to an
operating system command. To access the DOS environment, simply
select the DOS command with the mouse or enter the command on the
command line. To re-enter the XACT Development System, enter exit
at the operating system command prompt.

If you want to execute a system command from the Design Manager,
enter it in the following manner.

dos command

This executes the command or program and returns you to XDM upon
completion of the command or program.

Edit

Browsing a file within XDM can be slow on a PC and should only be
done if you do not have a text editor on your system. If you want XDM
to start your own text editing program when the Edit command is
selected, you can do so by setting the editor environment variable to the
name of your text editing program. Consider the following PC
example:

set editor=vi

XACT Development System

XACT Reference Guide

XDM

This command is not necessary on workstations, because you can
simply open another window to edit a file.

Execute

The Execute command allows you to execute command files inside
XDM. If you save a sequence of XDM commands in a text file, you can
execute them by first selecting Execute, then entering the command file
name. You return to XDM when the file finishes executing. The
command file must contain legal XDM commands.

Help

The Help command provides several methods for getting assistance
about a particular topic. On a PC, you can select a menu item and press
the F1 function key to display the online help. You can also select the
Help command from the menu, which displays the following message
at the bottom of the screen:

Enter help subject:

This display prompts you to select a help topic. An alternative method
for displaying help information is to enter the Help command, followed
by the topic or option.

help [topic-option]

For example, to display Help information about the —g option in APR,
enter the following syntax at the command line.

help apr-g

There are no spaces between the program name and the option.

Report

The Report command starts the Version command; however, instead of
displaying the output on your screen, it redirects the output to a text
file called version.rpt. You can read the text file at any time using the
Browse command.

ScanDisk

The ScanDisk command causes XDM to scan the hard disk drive,
according to the current setup, to determine which supported software
packages are installed on your system. While scanning, XDM displays
the following message:

Checking disk for supported software...

Volume 1 — Design Entry and Conversion

IMPORTANT

This messages indicates that XDM is analyzing your system and setting
up the contents of the DesignEntry, Translate, PlaceRoute and Verify
menus, so they reflect the software that is available.

Then XDM displays a message similar to the one shown below.
Writing c:\xact\data\proglist.xdm...

After a short while, another message indicates that the setup is
complete and XDM has generated a new, updated proglist.xdm file.

Writing c:\xact\data\proglist.xdm... done

Newly installed XDM-supported programs on your system might not
appear in the XDM menus until you run the ScanDisk command. For
ScanDisk to find an XDM-supported program, your PATH environment
variable must be set to include all directory paths specified during
installation.

Version

The Version command displays all supported programs currently
installed on your system, showing the location and version numbers for
each program. XDM might not be able to determine the version number
of some programs, such as Xilinx-supported third-party programs.

The Profile Menu

This menu serves to customize XDM. Using the commands in this
menu, you can alter such characteristics as screen graphics, mouse port
connections (if you are using a serial mouse on a PC), and device type
and speed. Changes that you make from the default profile are only
valid for the current session until you save them. To save a customized
profile use the Saveprofile command.

Cursor

The Cursor command allows you to change the shape of the cursor.
You can select an arrow, a bug, a cross, or a gunsight.

Family

The Family command tells XDM the family of LCA devices you are
using. XDM only displays valid menu items and command options for
the selected family. Current choices include XC2000, XC2000L
XC3000, XC3100, XC3000A, XC3000L, XC3100A, XC4000,
XC4000A, XC4000H, XC7200/XC7300.

XACT Development System

XACT Reference Guide

XDM

KeyCursor

When KeyCursor is enabled, the arrow keys move the cursor through
pull-down menus; pressing .J executes the selected option. You must
enter commands through the keyboard or use the mouse to select them
from pull-down menus. The default for the PC is on. The default for the
workstation is off.

Keydef

The keydef command allows you to program your system function
keys. After selecting this command, XDM prompts you for a key name
(such as, F1, F2, F3, and so forth.) and then a function. The function
can be any XDM command. To start an external text editor with the
push of a button, program one of the function keys. If you like the vi
editor, for example, enter the following on the command line to
program F2 to start the vi editor on a PC.

keydef F2 dos vi

Menucolors

The Menucolors command allows you to change the color of items
displayed in menus. Use Help on the individual commands in this menu
for more information on their functionality and usage.

Mouse

The Mouse command sets the function of each mouse button. The
default settings are Select (B1), Menu (B2), and Done (B3). B1 is the
left mouse button, B2 is the middle mouse button, and B3 is the right
mouse button.

On PCs only, if a Microsoft-compatible mouse driver is loaded, the
connection port is automatically determined by XDM. This is indicated
by “Mouse: MS Mouse” being displayed on the screen. If the driver is
not loaded you must select the connection port through this command.
In this case, the selected port name is displayed on the screen (for
example, “Mouse: COM1”)

Options

The Options command allows you to select default options for all
Xilinx software programs. Once selected, they are valid for the current
session. Use the SaveProfile command to save these options in the
xdm.pro file.

Volume 1 — Design Entry and Conversion

Palette

The Palette command allows you to choose different color palettes for
customizing your screen color.

Part

The Part command allows you to select a default part type to use when
translating a design. You can select the InDesign option if the part type
is specified in the schematic.

Readprofile

The Readprofile command allows you to load the profile saved in the
xdm.pro file. This command tries to read a custom profile from the
current directory. If one is not found it loads the default configuration
profile in the XACT/data directory.

Saveprofile

The Saveprofile command allows you to save the current profile into an
xdm.pro file in the current directory. Each time XDM is started, it tries
to read an xdm.pro file from the current directory. If one is not found it
will load the default configuration profile from XACT/data.

Settings

The Settings command displays the current profile configuration of
your Design Manager.

Speed

The Speed command allows you to select a speed grade for the device
specified with the Part command. If you have selected InDesign as your
part type, you must specify the speed grade in the design. In this case,
you cannot specify it using the Speed command.

1-34 XACT Development System

XACT
Reference
Guide,
Volume 1

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01)

The XMake Program

Printed in U.S.A.

XACT Reference Guide

XACT Development System

The XMake Program

This Program is Compatible with the Families Indicated.

M XC2000 M XC3100 M XC3100A [XC4000H
M XC2000L M XC3000A [XC4000 O XC7200
M XC3000 M XC3000L M XC4000A [XC7300

The XMake program uses the necessary schematic-to-XNF translation
programs and appropriate design implementation tools in succession to
automatically convert a design file into a BIT file. At the beginning of
this process XMake creates a MAK file. This file contains information
on the programs and options used to process the design. You can use
the MAK file for any subsequent invocations of XMake on the same
design.

If you are using design-entry software supported by the XACT Design
Manager (XDM), XMake automatically activates all the translation
programs needed to convert a design into a BIT file. XMake can also
automatically translate designs that contain non-schematic modules
such as memory modules and Boolean equations.

You can run XMake from the XDM menu system, or by typing the
command at the system prompt according to the XMake command line
syntax.

Using XMake from the XDM Menu

Using XMake from the XDM menu simplifies starting XMake with the
correct arguments. For detailed information, refer to the section,
Running XMake from XDM in the ‘XACT Design Manager’ chapter.

Use the Select mouse button (default is the left mouse button).
1. Select XMake from the Translate menu.
2. Select the XMake options from the displayed menu.
3. Select Done after you have selected the options.
4

. Select the top level design or MAK file to be processed from the
displayed menu.

5. Specify how far you want XMake to process the design by
selecting a target from the displayed menu of targets.

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-35

Volume 1 — Design Entry and Conversion

Using XMake from the System Prompt

Use the following syntax to run XMake:
xmake [options] infile [target_file]
where:

e options represents valid XMake options that you can specify. Refer
to Options in this chapter for descriptions.

e infile represents the design file you want XMake to process, or the
MAK file generated by the previous run of XMake on the design.

A design file can be one of the following.

o Viewlogic schematic file (design.1)

e OrCAD schematic file (design.sch)

e XSI output file (design.sedif or design.sxnf)
e Xilinx-ABEL file (design.abl)

o XNF file (design.xnf)

XMake automatically generates a new MAK file (design.mak), if a
design file is specified as infile.

XMake reads the option profile to determine with which options each
program should be started, when generating a MAK file. This option
profile can be one of two things:

o xdm.pro file, if XMake is run at the system prompt, or

e the current XDM settings in memory, if XMake is run from within
XDM.

Use a previously generated MAK file to reprocess a design to which
changes have been made.

Do not use the existing MAK file for a design if any modules have been
added or deleted.

target_file is an optional entry argument that tells XMake to stop
processing after this file is generated. By default, XMake processes a
design all the way to a configuration bitstream BIT file, unless you
specify a different target. For example, with the design rolldice, you
can specify rolldice.lca as a target, stopping XMake after it has
generated a placed and routed LCA file.

XMake Command Line Usage

XMake checks for the following command line rules, and, if it finds
violations, issues an appropriate error message and aborts processing.

1-36 XACT Development System

Files

XMake

® infile must exist in the current directory, except when it is a
Viewlogic file (design.1). In this case, infile must exist in the ./sch
directory. You can explicitly state the filename extension, or specify
the design name and XMake supplies the default extension.

e If you specify design (without an extension) as the infile, XMake
assumes that the file has a valid extension, and checks, in the
following order, for its existence. XMake takes the first file it finds
in this search sequence as its input.

./sch/design.1

./design.abl

./design.sch (PC only)
./design.sedif (Workstation only)
./design.sxnf (Workstation only)
./design.xnf

e The —a, —f, and —t options are mutually exclusive; they cannot be
selected together on the same command line.

e XMake ignores the -m and —n options if you explicitly specify a
target in the target field.

e If you select design.xxx as the infile, thereby causing XMake to
generat a new MAK file, the target (either explicitly specified in the
target field, or the default, design.bit, in the absence of the target
field) is recorded in the DEFAULT_TARGET entry of the generated
MAK file.

e If you select design.mak as the infile and do not specify a target in
the target field, XMake uses the target recorded in the MAK file. If
you specify the target, you override the target in the MAK file.

The input files that XMake requires to process a design and the output
files that XMake generates are described below. Note that the MAK file
is both an input file and an output file.

Input Files

XACT Reference Guide

To translate a design, XMake requires one of four file formats as input:
a top-level schematic file, an ASCII HDL design description file, an
XMake-generated MAK file, or (if you use the —x option) a top-level
XNF file.

Volume 1 — Design Entry and Conversion

Schematic File

XMake can only accept schematic design files created by Viewlogic
and OrCAD schematic editors. See the appropriate Xilinx interface user
guide for additional information.

HDL File

XMake can accept Xilinx ABEL and Xilinx Synopsys Interface ASCII
design description files as input. See the appropriate Xilinx interface
user guide for more details.

design.mak

As XMake runs, it uses and records, in the MAK file, the program
options currently saved in the XDM profile (xdm.pro). If you use a
MAK file as an input file, XMake uses the MAK file instead of
creating a new one. You should create a new MAK file after changing
the hierarchy of the design. Do not use a previously generated MAK
file if the design hierarchy has changed.

design.xnf

XMake can accept an XNF file as a design file. When specifying an
XNEF file as input, you must select the —x option.

Output Files

XMake creates a number of output files based on the options specified.
The programs that XMake calls also create output files. Some of the
files that can be generated are listed below.

design.mak

From a schematic file input, XMake creates a text MAK file
(design.mak) that documents how each design submodule is processed,
including the options used by the translation programs. See the MAK
File section in this chapter for more details.

design.out

XMake uses various translation programs and directs translation screen
output to a design.out file, unless the —o option is selected. This is an
ASCII text file containing all the screen output from the programs that
XMake uses. Since the OUT file contains all warning or error messages
generated during the design process, always review it to determine that
your design is error-free.

XACT Development System

Options

XACT Reference Guide

XMake

design.xff
XMake creates a flattened XNF file, design.xff, by calling XNFMerge.

design.xtf

XMake produces a completely trimmed and flattened XNF file for the
entire design, which is XTF.

design.xg

If the design involves XBLOX modules, or the you have selected the
-b option, XMake produces an optimized XNF file, design.xg, by
calling XBLOX. This applies only to the XC3000A/L, XC3100A,
XC4000, and XC4000A/H designs.

design.map

XMake generates a partitioned XNF file, design.map, by calling
XNFMAP. This applies only to the XC2000, XC2000L, XC3000,
XC3100, XC3000A/L, and XC3100A designs.

design.lca

XMake creates an LCA file that is partitioned, placed, and routed by
either the Automatic Place and Route (APR) program or the Partition,
Place, and Route (PPR) program.

design.bit

XMake creates a bitstream file for all designs that successfully route
with either APR or PPR. You can download the BIT file to an LCA.
The configuration options for the bitstream generator are determined by
the options set in the XDM profile (xdm.pro).

XMake options are listed in alphabetical order with brief functional
descriptions.

Use map-then-merge Strategy

Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L,
XC3100A only.

The —a option causes XMake to use the map-then-merge mapping
strategy. XMake automatically selects the —a option for XNFMAP,
regardless of your settings in the option profile. XNFMAP options —q
and —u are ignored, if selected.

Volume 1 — Design Entry and Conversion

-b

Perform X-BLOX Optimization

Supports XC3000A/L, XC3100A, XC4000, XC4000A/H only.

The -b option causes XMake to generate a MAK file that includes
X-BLOX optimization in the design-implementation flow. First,
XNFPrep runs, next X-BLOX runs, then XNFPrep runs again
generating a design.xg file. PPR takes this file as its input, rather than
design.xtf.

If the design file contains the DEF=BLOX or DEF=X-BLOX attribute,
then X-BLOX automatically runs during processing. In this case,
specifying the —b option ensures X-BLOX is run with ‘archopt=TRUE’,
regardless of your settings in the option profile.

Use map-FILE=-then-merge Strategy

Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L,
XC3100A only.

The —f option causes XMake to use the map-FILE=-then-merge
mapping strategy. XMake automatically selects the —q option for
XNFMAP, regardless of your settings in the option profile. XNFMAP
options —a and —u are ignored, if selected.

Generate MAK File/Do Not Process Design

The —g option causes XMake to create a MAK file only, without
continuing with the commands in the MAK file to implement the
design. Use this option when you want to create a custom MAK file,
forcing XMake to generate an initial script that you can edit.

Use APR/PPR Guide File

The —i option causes XMake to automatically select the guide file
option for APR (-g) and PPR (guide=). If APR —g or PPR guide=
option is already selected in the profile, the guide file name specified
on the XMake command line after the —i option overrides the currently
selected guide file name.

The guide file must have a .Ica extension. If the guide file is specified
without an extension on the XMake command line, XMake
automatically appends .Ica to the file name.

For XC2000, XC2000L, XC3000, XC3100, XC3000A/L, and
XC3100A designs, XMake also ensures that the mapping of the CLBs
is guided via the XNFMAP —k option. XMake automatically runs

XACT Development System

XACT Reference Guide

XMake

LCA2XNF on the guide LCA file to generate a design.pgf file for use
by XNFMAP.

Use Old Library Only

The -1 option causes XMake to automatically select the
‘use-old-library-only’ option when starting translators with such an
option. If you do not select this option, XMake defaults to use the
Unified Library on the selected design.

Make Placed and Routed Design

The —m option sets the target to design.lca. The MakeBits program will
not be run by XMake. If you specify a target file in the target field,
XMake ignores this option.

Stop to Review DRC

The —n option sets the target to design.xft if you are processing XC4000
devices. XMake will not run PPR, XDelay, or MakeBits during the
process. The —n option sets the target to design.map if you are
processing XC3000A/L devices. XMake will not run PPR, XDelay, or
MakeBits during the process. The —n option sets the target to
design.map if you are processing XC2000, XC3000, or XC3100
devices. XMake will not un MAP2LCA, APR, or MakeBits during the
process. If you specify a target in the target field, XMake ignores this
option.

Direct Output to Screen

The —o option causes XMake to direct all program output to the screen
instead of generating a design.out file.

Use Specified Part Type

The —p option allows you to set or change the part type for the design.

Re-Execute All Commands to Translate
Design

The —r option guarantees that XMake reprocesses the entire design,
including unchanged submodules from the last time the design was
processed. There is a difference between running XMake with the —r
option on a MAK file and a schematic file, as described below.

Volume 1 — Design Entry and Conversion

MAK File Input with -r

XMake performs every step in the MAK file, regardless of whether the
files have been changed since the design was last processed. If you do
not use the —r option, XMake only reprocesses those parts of the design
that have been changed.

Schematic File Input with -r

XMake recreates the MAK file and reprocesses the entire design. If you
do not use the —r option, XMake recreates the MAK file and only
reprocesses those modules that have changed.

Use merge-then-map Strategy

Supports XC2000, XC2000L, XC3000, XC3100, XC3000A/L,
XC3100 only.

The -t option causes XMake to use the merge-then-map mapping
strategy. XMake automatically excludes the —a, —q, and —u options for
XNFMAP, regardless of your settings in the option profile.

Verbose Mode

The —v option causes XMake to display explanatory information on its
progress.

XNF Only (Interface to Third-Party
Schematics)

The —x option causes XMake to search for XNF files only, instead of
schematic files. This option allows you to use third-party design-entry
tools not directly supported by XMake to translate a design (in XNF
file format) into an LCA file.

Each time you reprocess your design, you must do the following.

e Manually (perhaps using a batch file) translate each design
submodule into an XNF file using the interface program(s) for your
design-entry program.

e Use XMake with the —x option and any other required options.

To compile the design into a BIT file, XMake bypasses the
design-to-XNF translation (since the files are already in XNF format)
and runs the required design-implementation programs.

XACT Development System

XMake

XMake Design Flow

This section contains flow diagrams to explain the design flows that
XMake performs on the Xilinx LCA devices. Refer to the flow
applicable to the device family that you are using.

(Schematic) (Schematic) (Schematic)
1]

Translator

Note: When using the -x option, the
XMake process starts with the
XNF files.

G

XNFMerge

(XFF)

Note: XMake packages these
steps. It is not possible to
specify the unrouted LCA
file as a target.

LCA (unrouted)

LCA (routed)*

Note: This is the default target.

* Files that can be specified as a target X4250

Figure 1-4 XMake Flow for XC2000, XC2000L, XC3000,
XC3100 Designs

XACT Reference Guide 1-43

Volume 1 — Design Entry and Conversion

(Schelmatic) (Schematic) (Schg;naﬁc)

Note: When using the -x option,
the XMake process starts
@NE) with the XNF file.

Note: This path is followed if
the design involves
X-BLOX symbols, or when the
-b option is used.

Note:
m XMake packages these steps.

It is not possible to specify
(LCA {no delay information)) the LCA file with no delay information
as a target.
XDelay
(LCA(with delay information)*)
MakeBits |
X4248
* Files that can be specified as a target

Figure 1-5 XMake Flow for XC3000A, XC3000L,
XC3100A Designs

XACT Development System

XMake

(Schematic) (Schematic) (‘Schematic)

Note: When using the -x option,
the XMake process starts
with the XNF file.

Note: This path is followed
if the design involves
X-BLOX symbols, or when
the -b option is used.

Note:
m XMake packages these steps.
It is not possible to specify

(LCA (no delay information)) the LCA file with no delay information

as a target.
XDelay

(LCA(with delay information)®)

Note: This is the default target.

X4249
* Files that can be specified as a target

Figure 1-6 XMake Flow for XC4000, XC4000A, and
XC4000H Designs

XACT Reference Guide

Volume 1 — Design Entry and Conversion

MAK File

The MAK file contains a series of target entries (statements and
commands) required to produce a BIT file for the design. Each entry
specifies which type of file (target_file) is generated, based on the
changes in the dependent_file, and the programs (command) used.

Each target file entry has the following format.

target_file: dependent_file ...
command [options] ...

The following list explains the specific syntax requirements for the
MAK file.

The target file name must start in the first column. Leading blank
spaces or tabs are not permitted.

Each field (file name, command name, command line argument,
etc.) must be separated from any others by at least one space or tab
character.

Command lines must start with at least one space or tab character.
Blank lines are ignored.

Comment lines must start with a # in the first column.

A Simple MAK File Example

The simple MAK file example in Table 1-1 instructs XMake to convert
the Viewlogic schematic select.1 into an XC4000 BIT file. If you to
perform a manual translation, follow these steps:

1. Use WIR2XNF to convert the WIR file into an XNF file.
2. Use XNFMerge to create a flattened XNF file.

3. Use XNFPrep to perform design rule check and trim redundant
logic.

4. Use PPR to convert the XNF file into an LCA file.

5. Use XDelay with the —d and —w options to add delay information
to the LCA file

6. Use MakeBits to create a bitstream file for configuring the LCA.

Table 1-1 shows an extremely simpleMAK file that accomplishes these
steps. The command syntax might vary depending upon the current
profile.

XACT Development System

XMake

Table 1-1 Contents of a MAK File

MAK File Contents

select.bit : select.lca
makebits select.lca

select.lca : select.xtf
ppr select.xtf parttype=4005pc84-5
xdelay -D -W select.lca

select.xtf : select.xff
xnfprep select.xff select.xtf parttype=4005pc84-5

select.xff : select.xnf
xnfmerge -P 4005pc84-5 select.xnf select.xff

select.xnf : sch\select.l
wir2xnf -B select select.xnf

When instructed to make select.bit for the first time, XMake
automatically follows these steps (only the Viewlogic schematic file
exists at first), starting from the first target entry at the top of the file.

1. Select.bit depends on select.lca which currently does not exist, so
XMake searches the MAK file to see how to make select.lca.

2. Select.lca depends on select.xtf which currently does not exist, so
XMake searches the MAK file to see how to make select.xtf.

3. Select.xtf depends on select.xff which currently does not exist, so
XMake searches the MAK file to see how to make select.xff.

4. Select.xff depends on select.xnf which currently does not exist, so
XMake searches the MAK file to see how to make select.xnf.

5. Select.xnf depends on select.1, which does exist, so XMake runs
WIR2XNEF, which creates select.xnf.

Step 5 is slightly different, if you started with an OrCAD schematic. In
this case, select.xnf depends on select.sch, which does exist, so XMake
runs ANNOTATE, INET, and SDT2XNF, which creates select.xnf.

XACT Reference Guide 1-47

Volume 1 — Design Entry and Conversion

10.

. Now that select.xnf exists, XMake makes select.xff by running

XNFMERGE.

. Now that select.xff exists, XMake makes select.xtf by running

XNFPREP.

. Now that select.xtf exists, XMake makes select.Ica by running

PPR.

. To add delay information to the select.lca, XMake runs XDelay

with the —d and —w options.

Now that select.lca exists, XMake makes select.bit by running the
MakeBits program.

XACT Development System

XMake

A Complete MAK File Example

An example of a complete XC4000-type MAK file is provided below
for reference. The demo design is an XC4003 design that was created
using Viewlogic.

Created by XMAKE Version 5.0.0 on Mon Jan 3 18:44:42 1994
#
The following options were used: -G

#
The following is the hierarchy of the design ’‘sch\righton.1’
#
sch/righton.1
statmach.abl
sch/rightled. 1
sch/leftled.1
sch/points_b.1
xnf/bus_if04.xnf
xnf?bus_if04.xnf
sch/sw5.1
sch/8m2-1.1
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/m2-1.xnf
xnf/compm8.xnf
sch/ledbar.1
sch/lights.1
memory.mem
xnf/clébcr.xnf

L I S I S S I S R SR O O O

DEFAULT_TARGET righton.bit

righton.bit : righton.lca
makebits righton.lca

righton.lca : righton.xtf
ppr righton.xtf parttype=4003PC84-5
xdelay -D -w righton.lca

righton.xtf : righton.xg
xnfprep righton.xg righton.xtf parttype=4003PC84-5

righton.xg : righton.xtg
xblox righton.xtg righton.xg parttype=4003PC84-5

righton.xtg : righton.xff
xnfprep righton.xff righton.xtg parttype=4003PC84-5

righton.xff : xnf/clébcr.xnf xnf/memory.xnf xnf/lights.xnf \
xnf/ledbar.xnf xnf xnf/compm8.xnf xnf/m2-1.xnf xnf/8m2-1.xnf \
xnf/sw5.xnf xnf/bus_if04.xnf xnf/points_b.xnf xnf/leftled.xnf \
xnf/rightled.xnf xnf/statmach.xnf xnf/righton.xnf

xnfmerge -D xnf -D . -P 4003PC84-5 xnf\righton.xnf righton.xff

xnf/righton.xnf : sch/lights.l sch/ledbar.l sch/8m2-1.1 sch/sw5.1 \
sch/points_b.1 sch/leftled.l sch/rightled.l sch/righton.1
wir2xnf -B -OD xnf righton righton.xnf

XACT Reference Guide 1-49

Volume 1 — Design Entry and Conversion

xnf/statmach.xnf : statmach.abl
abl2xnf statmach.abl output_directory=xnf family=XC4000 \
parttype=4003PC84-5

xnf/memory.xnf : memory.mem
memgen memory.mem output_directory=xnf

Macros in the MAK File

XMake does not create macros in the MAK file. However, user-created
MAK files can include user-defined macros in which the macro value
replaces the macro name in any subsequent occurrences in the MAK
file.

The syntax for defining a macro is as follows.
macro_name=value

The macro name must start in the first column; the value is the string
between the first non-space character after the equal sign to the end of
the line.

To use the macro, include the following string wherever you want the
macro value inserted in the MAK file. If the macro name is more than
one character, it must be enclosed in parentheses.

%(macro_name)

The following example shows how to use a part type macro when the
part number is used in several programs.
NEWPART=3020PC68-100

rolldice.lca : rolldice.map
map2lca -p% (NEWPART) rolldice.map rolldice.lca
apr -w -y rolldice.lca rolldice.lca

rolldice.map : rolldice.xtf
xnfmap -p% (NEWPART) rolldice.xtf rolldice.map

rolldice.xtf : rolldice.xff
xnfprep rolldice.xff rolldice.xtf parttype=% (NEWPART)

XACT Development System

XMake

Error Messages and Recovery Techniques

XACT Reference Guide

Command command failed (rc=n), file removed.

A fatal error occurred in a program called by XMake. Check your
design.out file for details and correct any errors.

Command command not found, file removed.

A program called by XMake was not found. Verify that the program is
installed correctly, and that the required path and environment variables
are specified correctly.

Command line length exceeds maximum allowed by
the system (n chars). Cmd=command.

The command line is too long. The maximum characters allowed is
127 characters on a PC, 2047 on a Sun, and 511 on an Apollo.

Corrupted speeds file file.

XMake found a corrupted speeds file. Reinstall the relevant data files to
obtain the correct speeds files.

design Design must not have a preceeding path
name.

XMake must be run on files in the current directory. Change
directories to the directory containing the design, and rerun XMake on
the design name without the preceding pathname.

Encryption checksum failed for speeds file
file.

XMake failed to validate the reported encrypted speeds file. The speeds
file might be corrupted. Reinstall the relevant data files to obtain the
correct speeds files.

Expanded line length exceeds maximum allowed by
the program (1024 characters).

The MAK file contains a line with an expanded XMake macro (not a
design macro) that is too long. The maximum characters allowed in an
expanded line is 1024.

Failed to find part type part_type in
‘partlist.xct’.

Specified part type is not available. Select another, valid part type.

Volume 1 — Design Entry and Conversion

Failed to find speed grade speed for part parttype
in part list.

XMake was unable to find the specified speed grade for the specified
part type. Make sure you have specified a valid speed grade.

Failed to find user-defined subhierarchy symbol
in file.

While scanning an XNF file, XMake found a user-defined symbol with
no corresponding schematic or XNF file. Check the design and ensure
there is a design file for this symbol in the currer:t directory. For
user—created libraries in Viewlogic, the library components must have a
LEVEL=MXILINX attribute.

Failed to make file.
XMake failed to produce the specified file. Check the design.out file
for error details.

Failed to open file.

XMake could not open the specified file. This could be a system
environment problem. On a PC, check in the config.sys file to see that
the ‘FILES=" command is present and set to a value of at least 20.

Failed to copy stderr handle to term.

System error, which is not recoverable. There are no known recovery
techniques. XMake cannot be executed on this machine. Manually run
the appropriate design implementation tools.

Failed to force term to be unbuffered.

System error, which is not recoverable. There are no known recovery
techniques. XMake cannot be executed on this machine. Manually run
the appropriate design implementation tools.

Failed to join stdout and outfile.

Due to a system error, XMake cannot redirect the output message from
each tool into a design.out file. Use XMake with the —o option. This
enables output messages to display on the screen.

Failed to reopen file.

Due to a system error, XMake cannot redirect the output message from
each tool into a design.out file. Use XMake with the —o option. This
enables output messages to display on the screen.

XACT Development System

XACT Reference Guide

XMake

Failed to join stderr and outfile.

Due to a system error, XMake cannot redirect the output message from
each tool into a design.out file. Use XMake with the —o option. This
enables output messages to display on the screen.

Failed to touch file.

The attempt to update the time stamp failed on the reported file. If the
file is protected against such changes, remove the protection and rerun
XMake.

family not supported by this program.

XMake supports the following device families:

XC2000/XC2000L/XC3000/XC3100
XC3000A/XC3000L/XC3100A

XC4000/XC4000A/XC4000H

For XC7200 and XC7300 run XEMAKE.

In ‘partlist.xct’. Missing alias name.

In ‘partlist.xct’. Missing aliased-to part.
In ‘partlist.xct’. Missing device name.

In ‘partlist.xct’. Missing STYLE.

In ‘partlist.xct’. Missing SPEEDFILE.

In ‘partlist.xct’. Unknown STYLE style.

In ‘partlist.xct’. Unknown aliased-to part
part_type.

These seven messages indicates that the partlist.xct file is corrupted.
You can obtain the correct partlist.xct file by reinstalling partlist.xct.

In speeds file file. Expecting ‘VERSION”, found
string.

In speeds file file. Missing format.
In speeds file file. Expecting format format,

found string.

These three messages indicates that the reported speeds file is
corrupted. Reinstall the relevant data files to obtain the correct speeds
files.

Volume 1 — Design Entry and Conversion

Invalid argument argument.

The reported argument violates XMake command line syntax. Refer to
the Using XMake from the System Prompt section in this chapter for
the valid XMake syntax.

Invalid option option.

The reported option is not a valid XMake option. Refer to the Options
information for valid XMake options.

Invalid speed grade speed_grade for part
part-type.

Specified speed grade is not available for the part. Select another valid
speed grade for the desired part.

Item length exceeds maximum allowed by the
program (64 chars).

The MAK file contains an item, such as file name or macro value that
is too long. The maximum characters allowed in a MAK file is 64.
Macro name length exceeds maximum al lowed by
the program (64 chars).

The MAK file contains a line with an XMake macro that is too long.
The characters allowed for a macro name in a MAK file is 64.
Mismatch between ‘partlist.xct’ and file.

The partlist.xct file and the reported speeds file are incompatible. The
speeds file might be corrupted. Reinstall the relevant data files to obtain
the correct speeds files.

Missing design name.

The command line is missing an input design name or a MAK file
name. Check the syntax and correct the error.

Missing macro name to follow macro modifier
‘%7,

While reading the MAK file, XMake encountered a macro modifier %
without a macro name to expand. Refer to the Macro information in
this chapter and edit the MAK file to correct the error.

Missing ‘')’ to complete macro name macro_name.

While reading the MAK file, XMake found a macro name to be
expanded which consisted of more than one character (indicated by the
opening parenthesis), but failed to find the closing parenthesis. Refer to

XACT Development System

XACT Reference Guide

XMake

the Macro information in this chapter and edit the MAK file to correct
the error.

Missing part type to follow option ‘-P’.

The —p option was specified on the command line without a part type.
Select a valid part type.

Not allowed to read unencrypted speeds file
file.

XMake is only allowed to read the reported speeds file in the encrypted
form.

Not enough memory to execute command command,
file removed.

There is insufficient memory to execute the command. Make additional
memory available by removing any TSRs or, rerun XMake from the
command line instead of from within XDM.

Number of hierarchy levels exceeds maximum
allowed by the program (100 levels).

The design has too many levels of hierarchy. The maximum number of
levels allowed by XMake is 100. There is no workaround, except to
reduce the levels of hierarchy to meet the program requirements.

Options ‘-A’, ‘-F’ and ‘-T’ cannot be specified
together.

Option —a (Use ‘map-then-merge’ strategy), —f (Use
‘map-FILE=-then-merge’ strategy), and option —t (Use
‘merge-then-map’ strategy) are mutually exclusive. Select the most
appropriate strategy and specify the corresponding option on the
command line.

Original line length exceeds maximum allowed by
the program (1024 chars).

The MAK file contains a line that is too long. The maximum
characters allowed for a line in a MAK file is 1024.

Out of memory. Needed n objects of n bytes.

There is insufficient memory for XMake to continue execution. Make
additional memory available by removing any TSRs, and rerun XMake
from the command line instead of from within XDM.

Volume 1 — Design Entry and Conversion

Part type not specified on the command line or
in the top level XNF file.

The attempt to get the part type failed. XMake finds the part type from
the command line if you selected the —p option or, from the top level
design file (if none is specified on the command line). This message is
issued only if you selected the —x option on the command line, and the
top level design file is an XNF file.

Party type not specified on the command line or
in the top level schematic file.

The attempt to get the part type failed. XMake finds the part type from
the command line if you selected the —p option or, from the top level
design file (if none is specified on the command line.) This message is
issued only if you did not select the —x option on the command line and
the top level design file is a schematic file.

Recursive reference made to file.

XMake found a recursive loop in the schematic design or in the MAK
file. Either there is a schematic functional block that contains itself, or
there is an error in the MAK file made during editing. Check either the
design or the MAK file.

Syntax error in file. ‘=’ expected following
FILE parameter.

Syntax error in file. ‘=’ expected following
MAP parameter.

Syntax error in file. ‘=’ expected following
DEF parameter.

These three messages indicates that the reported XNF file is corrupted.
Use XMake with the —r option, if the schematic-to-XNF translation for
the design is directly supported by XMake (Viewlogic or OrCAD); or,
manually regenerate the XNF file, and use XMake with the —x option.

Target target not found in makefile file.

XMake failed to find the specified target file name in the MAK file.
Target file name must match one of the output files generated by the
programs called by XMake such as design.xtf, design.lca, etc.

Top level XNF file for design design does not
exist.

XMake failed to find the top-level design file, design.xnf. Make sure
you are in the directory that contains the specified design files. This

XACT Development System

XACT Reference Guide

XMake

message is issued only if you selected the —x option from the command
line in which case the top-level design file must be an XNF file.

Top level schematic file for design design does
not exist.

XMake failed to find the top level schematic file for the specified
design. Make sure you are in the directory that contains the specified
design files. This message is issued if you did not select the —x option
on the command line in which case the top-level design file must be a
schematic file.

Unable to create subdirectory name.

XMake failed in an attempt to create a subdirectory name in the current
directory. Check for a pre-existing file or directory by that name and
remove it from the current directory.

Unable to create subdirectory name. File name
exists.

XMake failed in an attempt to create a subdirectory name in the current
directory, because such a subdirectory already exists. Remove the
existing name file and rerun XMake.

Unable to write to file. Disk full.

There is insufficient disk space for XMake to write to the reported file.
Provide additional disk space and rerun XMake.

Unable to write to subdirectory name.

The subdirectory name is write-protected. Remove the protection and
rerun XMake.

Undefined macro macro_name.

While reading the MAK file, XMake tried to expand a macro name but
found it to be undefined. Edit the MAK file and correct the error.

‘xdm.pro’ contains the following invalid
program options.

This error message can be issued if you are running XMake at the
system prompt (not from within XDM), and there is an old ‘xdm.pro’
file in the current directory, which contains program options that are
obsolete or invalid. Run XDM to generate a correctly customized
‘xdm.pro’ and try again.

Volume 1 — Design Entry and Conversion

Warning Messages and Recovery Techniques

Option -option is ignored when using makefile.

Options —a -b, —f, —g, —i, -1, -m, —n, —p, —t, and —x only control the
MAK file generation phase of the XMake program, and are ignored by
XMake if a MAK file is specified as input.

Option ‘-M’ is redundant when ‘-N’ is
specified.

Option —n implies that the —m option has also been selected.

Option -option is ignored when target is
specified.

XMake interprets the —m and —n options to set the target appropriately
in the absence of the target field on the Command Line. Both options
are ignored if the target is explicitly stated on the command line.

Option -option is ignored when using family
part. :

Options —a, —f, and —t apply only to the following device families:
XC2000/XC2000L/XC3100/XC3000
XC3000A/XC3000L/XC3100A

Option -b applies only to the following device families:
XC3000A/XC3000L/XC3100A

XC4000/XC4000H/XC4000A

No speed grade specified for part part_type.
Default speed grade will be used.

If a valid part type is selected without speed grade, XMake uses the
default speed grade for the part.

1-58 XACT Development System

The MemGen Program

XACT
Reference
Guide,
Volume 1

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01)

Printed in U.S.A.

XACT Reference Guide

XACT Development System

The MemGen Program

This Program is Compatible with the Families Indicated.

0 XC2000 0] XC3100 0 XC3100A [XC4000H
[J XC2000L [J XC3000A M XC4000 [XC7200
0 XC3000 [J XC3000L [XC4000A] XC7300

MemGen creates RAMs or ROMs that can be from to 1 to 32 bits wide
and up to 256 words deep. It generates an XNF file for the specified
memory, and optionally creates a schematic symbol to represent it. It
creates address-boundary-checking logic for memories with depths that -
are not powers of two.

Syntax

MemGen accepts a memory definition (MEM) file to describe a
memory. The syntax for executing MemGen is shown below.

memgen filename[.mem] [options]

Files

MemGen requires one input file and generates several output files as
described below.

Input Files

filename.mem

The input file must have a MEM extension, but you do not need to
specify the extension on the command line, since MEM files are
recognized when MemGen is run. See the Memory Definition File
section for more information.

If the specified file does not exist, MemGen prompts you for the
memory type, its width and depth, and the type of symbol to generate.
If given a new file name, you can use MemGen interactively to
completely define a RAM and its symbol. Where applicable, you can
interactively define a ROM except for its initialization value and bus
representation style, which must be defined in the MEM file.

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-59

Volume 1 — Design Entry and Conversion

Output Files

filename.xnf

This output file is an XNF file that contains a description of the
memory specified in the MEM file.

filename.cmd

This file is the command file that MemGen creates when you specify
the — o option. This command file is used within the OrCAD LibEdit
program to create an OrCAD/SDT symbol for the specified memory.

filename.1

This file is the Viewdraw symbol file that MemGen creates when you
specify the —v option. The symbol file is placed in the /sym
subdirectory of the current project directory.

memgen.log

This is the log file that contains all the information displayed on the
screen during MemGen execution. You can specify a different log file
name by using the Logfile parameter. Refer to the Options and
Parameters section for a description of the Logfile parameter.

Memory Definition File

A memory definition file, or MEM file, defines a memory and its
contents to MemGen. A description of the commands used in this file
follows the example. An example of a MEM file is shown here.

TYPE ROM ; The memory is a ROM

DEPTH 256 ; The memory is 256 words deep

WIDTH 16 ; Each memory word is 16 bits wide

SYMBOL VIEWLOGIC BUS ; Build a VIEWLOGIC symbol with bus
; inputs ;

DEFAULT FFFF ; Each unspecified location is set to HIGH

DATA 2#1111_0000_1111_0000#, ; Binary data
8#177777+#, ; Octal data
10#23#, ; Decimal data
l6#4a#, ; Hexadecimal data
4f ; Unspecified base assumed
; to be hexadecimal

XACT Development System

XACT Reference Guide

MemGen

Specifying Memory Characteristics

A MEM file consists of a series of commands that specify the
dimensions and contents of a memory. The commands used in a MEM
file include Type, Depth, Width, Symbol, Default, and Data (see the
example above). With the exception of the Data and Default
commands, you can use parameters to specify all memory
characteristics listed in the MEM file. See the Options and Parameters
section for more information.

Type

The Type command defines the type of memory to build. RAMs are
read-write memories; ROMs are read-only memories.

type [RAM|ROM]

Depth

The Depth command defines the depth, in words, of the memory. Each
word is “width” bits wide. Specify the memory depth with a positive
decimal integer value between 2 and 256, inclusive.

depth memory_depth
Any memory-depth value less than 2 or greater than 256 is flagged as
an error.
Width

The Width command defines the width of the memory, which is the
number of bits in each word. Specify the memory width with a positive
integer between 1 and 32, inclusive

width memory_width

Any memory-width value larger than 32 is flagged as an error.

Symbol

The Symbol command specifies the schematic editor for which
MemGen should create the memory symbol. It also defines the format
of the data and address lines, which are created as either individual pins
or as bus signals.

symbol editor [bus|pins]
The editor is one of the following: Viewlogic, OrCAD, or None.

The first field of the Symbol command defines the type of schematic
editor. The second field specifies the format for address and data lines,
either bus (BUS) or individual pins (PINS). Since the OrCAD/SDT
schematic editor does not support the creation of bus pins on symbols,
you can only specify the PINS selection for an OrCAD symbol.

Volume 1 — Design Entry and Conversion

If no symbol is to be created, specify None for the Symbol command,
or omit the Symbol command from the MEM file.

The Symbol command directs MemGen to generate a new symbol or
command file every time it is run. You can prohibit MemGen from
generating a new symbol or command file by removing the Symbol
command from the .mem file. The XNF file will still be generated if
the Symbol command is removed.

If a memory module is to be used in an unsupported schematic editor,
you must manually create a symbol. MemGen supports only Viewlogic,
and OrCAD schematic editors.

Default

The Default command defines the value of any ROM location not
specified by the Data command. If no default value is specified, all
unspecified locations are zeros. Use the Default command to fill
unspecified locations with a value other than zero. The Default
command is not permitted for RAMs, since initial values are not
supported on XC4000 RAMs.

default datavalue

You can write the specified datavalue in binary, octal, decimal, or
hexadecimal. See the Data Formats section later in this chapter for
more details.

Data
The Data command specifies the complete contents of a ROM.

data datavaluel, datavalue2, ... datavaluen

When used, the data specification must be the last command in a MEM
file. The Data command is not permitted for RAMs, since initial values
are not supported on XC4000 RAMs.

The Data command can be specified over multiple lines, although the
data keyword is used only once. Individual data values must be
separated by commas or by blank characters, such as spaces, carriage
returns, or tabs.

You can write the specified data values in binary, octal, decimal, or
hexadecimal. See the Data Formats section later in this chapter for
more details. The first datavalue is location zero; the next datavalue is
location one, and so forth.

Comments

; comment_strings

XACT Development System

Data Formats

XACT Reference Guide

MemGen

MemGen ignores all text to the right of a semicolon until the end of the
line.

The data values specified in either the Default or Data commands can
be binary, octal, decimal, or hexadecimal. Hexadecimal is the default
numeric base for data values. For the other values, precede the data
with the appropriate numeric base in the following format.

base#tvaluett

® base — The base is a decimal number and must be either 2 (binary),
8 (octal), 10 (decimal), or the default, 16 (hexadecimal). The default
need not be specified.

¢ value — The data value must contain only characters valid for the
specified numeric base. Table 1-2 defines valid characters. You can
use an underscore character (_), which MemGen ignores, to format
data within a field.

For example, the following value is difficult to read.
2#00010010011100100110011101101001#%

Using the underscore character, data fields are easier to read, as seen
below.

2#0001_0010_0111_0010_0110_0111_0110_1001#

Table 1-2 Various Numerical Bases and Their Valid

Characters
Base Type Base Valid Characters
Binary 2 01_
Octal 8 01234567 _
Decimal 10 0123456789 _
Hexadecimal 16 0123456789 _
abcdefABCDEF

The following example shows how to express the decimal value 17.
2#10001# (binary)

s#21# (octal)
10#17# (decimal)
16#11#% (hexadecimal)

Volume 1 — Design Entry and Conversion

Options

The following options and parameters control the type of memory and
schematic symbol that MemGen creates. With the exception of the
Logfile parameter, you can specify all options from the MEM file.

memory_depth= Number of Words in Memory

The memory_depth= parameter specifies the number of words in the
memory. The depth must be a number between 2 and 256, inclusive.

parttype= Target LCA Device

The parttype= parameter specifies the target LCA device part. This
parameter defines the PART record in the output XNF file that
MemGen creates. If you do not specify a part type, MemGen uses
4005PG156 as the default.

The part type you specify should be a valid XC4000 device.

type= Memory Type
The type= parameter specifies either a ROM or a RAM.

word_width= Number of Bits per Memory Word

The word width= parameter specifies the number of bits in each
memory word. The word width must be between 1 and 32, inclusive.

-b Bus Notation

If you enable the —b option, MemGen uses bus notation for data and
address lines. The bus naming convention that MemGen uses for the
symbol and the XNF file is determined by the specified schematic
editor. Therefore, it is important to specify the correct schematic-editor
option when using this option, otherwise the symbol does not bind
correctly.

NOTE This parameter does not apply to OrCAD, which does not support bus
B, notation or the symbols.

-0 OrCAD/SDT Symbol

If you use the —o option, MemGen creates a memory symbol for the
OrCAD/SDT schematic editor. The symbol description stored in
filename.cmd is an import file for the OrCAD LibEdit symbol editor
program.

1-64 XACT Development System

logfile

MemGen

Viewlogic Viewdraw Symbol

If you enable the —v option, MemGen creates a symbol file for the
memory symbol in the Viewlogic Viewdraw schematic editor. The
Symbol file (filename.1) is placed in the /sym subdirectory of the
current project directory.

MemGen Log File Name

By default, the screen output from MemGen is stored in a file called
memgen.log. You can specify an alternate file name with this
parameter.

logfile= filename.extension

If you do not specify a file name extension, MemGen uses the default
extension LOG. If the Logfile parameter is not used, MemGen writes
the screen output to the file memgen.log, overwriting any previous
versions of this LOG file.

old_library= Output XNF File for Old (non-Unified)

IMPORTANT

Libraries

Set the old_library= parameter to TRUE if the output XNF file is to be
included in a design that was created from a schematic symbol library
that existed prior to the Xilinx Unified Library. Designs for the “old”
libraries do not include the new LIBVER parameter on the symbols.
Designs from the Unified Library are distinguished by the presence of
the LIBVER= parameter on the symbols. If old_library is set to TRUE,
the LIBVER= parameter is omitted from the output design so the XNF
file is compatible with the old library.

The default value is old_library=FALSE. The default generates an XNF
file that includes LIBVER parameters on the symbols so that the file is
compatible with the Unified Library.

Xilinx requires all files in each completed design to be consistent with
either the Unified Library or an old library. If your design is drawn
using the Unified Library leave the old_library= parameter set to the
default of FALSE. If your design is not from the Unified Library, set the
old_library= parameter to TRUE.

output_directory= Set Output Directory

XACT Reference Guide

Set the output_directory= parameter to a directory name if you want the
XNF file put in a directory other than the current directory. The other
MemGen-generated files are not affected by the output_directory=
parameter setting. The default is to put the XNF file into the current
directory.

Volume 1 — Design Entry and Conversion

Examples

This example shows how to use MemGen to create an XNF file and a
Viewlogic memory symbol from a memory definition file called
mymemory.mem, using the bus notation

memgen mymemory -V -b

This sytnax creates a file called mymemory.1 that is placed in the /sym
subdirectory of the current project directory. If a MEM file that already
contains information that contradicts the command line arguments
exists, the MEM file information overrides the command line. For
example, if an existing mymemory.mem is specified in the ORCAD
editor, the —v option for the Viewlogic editor would be ignored. In this
case, if the Viewlogic editor was desired, you would have to either edit
the mymemory.mem file or create a new MEM file.

Address Boundary Checking

The MemGen memory compiler automatically includes logic to check
address boundaries for any memory where the depth is not a power of
two. In this case, MemGen adds an active-High output called ERR, or
ADDR-ERR if bus notation has been specified for the memory.

An example of automatic address boundary checking is shown in
Figure 1-7. Four address lines are required to access the 12 memory
locations. However, using 4 address lines, 16 address values are
possible. Since only 12 locations are valid for this example, there are 4
illegal or invalid addresses. If any of these four locations are addressed,
the ERR output would go High, indicating that the address inputs are
attempting to address an invalid location.

Do oo
D1 o1
A0 RAM An address boundary
12X2 checking output is
Al 0.5CLBs automatically added.
A2 1 Level
A3 ERR
X2563

Figure 1-7 Address Boundary Checking

1-66 XACT Development System

XACT Reference Guide

MemGen

The ERR or ADDR-ERR output is not created for memories that have
depths that are a power of 2 (for example, memories that are 8, 16, or
32 words deep).

PPR automatically removes all unused extra logic created for address
boundary checking from the design.

Volume 1 — Design Entry and Conversion

1-68 XACT Development System

X14 C T XA.C.T-Petjformance
Reference """
Guide,

Volume 1

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Printed in U.S.A.

XACT Reference Guide

XACT Development System

XACT-Performance Utility

This Program is Compatible with the Families Indicated.

O XC2000 O XC3100 M XC3100A [N XC4000H
[0 XC2000L O XC3000A [XC4000 O XC7200
[XC3000 N XC3000L [XC4000A [J XC7300

XACT-Performance™ enables you to specify precise timing
requirements for your Xilinx FPGA designs. Use XACT-Performance
to specify the maximum allowable delay on any given set of paths in
your design. You identify a set of paths by identifying a group of start
and end points. The start and end points can be flip-flops, I/O pads,

IOB latches, or XC4000 RAMs. You can control the worst-case timing
on the set of paths by specifying a single delay requirement for all paths
in the set.

The primary method of specifying timing requirements involves
entering them on the schematic. However, you can also specify timing
requirements via the constraints file as well as PPR command-line
options. These command-line options do not provide as much control
and flexibility as entering timing information directly on the schematic.
See the “PPR” chapter in the XACT Reference Guide, Volume 2 for
more information about PPR command-line options. For detailed
information about the constraints you can use with your
schematic-entry software, refer to the XACT Libraries Guide.

Once you define timing specifications, PPR maps, places, and routes
your design based on these requirements.

To analyze the results of your timing specifications use the XDelay
program. Refer to ‘“The XDelay Timing Analysis Program” in the
XACT Reference Guide, Volume 3 for more information.

This chapter covers the following topics:
e Defining timing requirements using groups
e Defining timing requirements using path-type specifications

Although you can use end-point specifications (using groups) in the
same design with existing path-type specifications, Xilinx discourages
mixing the two methods. If you are modifying an existing design that
uses path-type timing specifications, refer to the “Defining Timing
Requirements Using Path-Type Specifications” section in the middle of
this chapter.

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-69

Volume 1 — Design Entry and Conversion

Defining Timing Requirements Using Groups

You can specify timing requirements by specifying a set of paths and
the maximum allowable delay on these paths. You specify the set of
paths by grouping start and end points in one of the following ways:

e You can refer to a predefined group by specifying one of the
corresponding keywords — FFS, PADS, LATCHES, or RAMS.

¢ You can create arbitrary groups within a predefined group by
tagging symbols with TNM (pronounced fee-name) attributes.

¢ You can create groups that are combinations of existing groups using
TIMEGRP symbols.

e You can create groups by pattern matching on signal names.

The following sections discuss each method in detail.

Understanding the Basics

This section introduces the following concepts that you need to know to
begin using XACT-Performance:

e TIMESPEC Primitive

¢ From-To Statement Syntax

TIMESPEC Primitive

The TIMESPEC primitive, as illustrated in Figure 1-8, serves as a
placeholder for timing specifications, which are called TS attribute
definitions. Every TS attribute must be defined in a TIMESPEC
primitive. Every TS attribute begins with the letters ““TS” and ends
with a unique identifier that can consist of letters, numbers, or the
underscore character ().

OrCAD Users — The implementation of XACT-Performance
described in this chapter differs slightly from the OrCAD
implementation; for example, the TIMESPEC primitive does not exist
in the Xilinx OrCAD library. For more details, refer to the OrCAD
Interface User Guide.

Mentor Users — The term attribute in this chapter is equivalent to
property as used in the Mentor environment.

The TIMESPEC primitive is 30 characters wide; however, you can
create TS attribute definitions of any length. Each TIMESPEC
primitive can hold up to eight TS attributes. If you want to include
more than eight TS attributes, you can use multiple TIMESPEC
primitives in your schematic.

XACT Development System

XACT-Performance Utility

TIMESPEC
TS01=FROM:FFS:TO:PADS=25

X4332

Figure 1-8 TIMESPEC Primitive

How you add a TIMESPEC primitive to your schematic depends on
your specific schematic-entry software. Refer to the appropriate Xilinx
Interface User Guide for step-by-step instructions.

From-To Statement Syntax

You can use From-To statements to specify timing requirements
between specific end points by using the following syntax within the
TIMESPEC primitive:

TSidentifier=FROM: group : TO : group2=delay

From-To statements are TS attributes that reside in the TIMESPEC
primitive. The parameters group! and group2 must be predefined
groups, previously created TNM identifiers, or groups defined in
TIMEGRP symbols. Predefined groups consist of FFS, LATCHES,
RAMS, or PADS and are discussed in the “Using Predefined Groups”
section. TNMs are introduced in the “‘Creating Arbitrary Groups Using
TNMs” section. TIMEGRP symbols are introduced in the “‘Creating
New Groups from Existing Groups” section.

Keywords, such as FROM and TO, appear in the documentation in
upper case; however, you can enter them in the TIMESPEC primitive in
either upper or lower case.

The delay parameter defines the maximum delay for the attribute.
Nanoseconds are the default units for specifying delay time in TS
attributes. You can also specify delay using other methods, including
megahertz, which are described in “Time Delay Specifications in TS
Attributes” section at the end of this chapter.

The following examples illuétrate the use of From-To TS attributes:

XACT Reference Guide 1-71

Volume 1 — Design Entry and Conversion

TS01=FROM:FFS:TO:FFS=30
TS_OTHER=FROM: PADS:TO:FFS=25
TS_THIS=FROM:FFS:TO:RAMS=35
TS_THAT=FROM: PADS:TO:LATCHES=35

Latches refer to input latches (INLATs or ILDs) only. Using From-To
syntax is the only way you can specify timing requirements for a RAM.

You can place TS attributes containing From-To statements in either of
two places: in the TIMESPEC primitive on the schematic as discussed
in this chapter or in the PPR constraints (CST) file. See the XACT
Libraries Guide for more information about specifying timing
requirements in the constraints file.

You can also define timing requirements by creating groups using
TNMs, creating TIMEGRP attributes, and creating groups by pattern
matching. These methods are discussed in the following sections.

Using Predefined Groups

You can refer to a group of flip-flops, input latches, pads, or RAMs by
using the corresponding keywords:

FFS CLB or IOB flip-flops

LATCHES input latches only; not latches built from
function generators

PADS input/output pads

RAMS for the XC4000 family only

XACT-Performance From-To statements enable you to define timing
specifications for paths between predefined groups. The following
examples are TS attributes that reside in the TIMESPEC primitive.
This method enables you to easily define default timing specifications
for the design, as illustrated by the following examples:

TS01=FROM:FFS:TO:FFS=30
TS02=FROM:LATCHES:TO:LATCHES=25
TS03=FROM: PADS:TO:RAMS=70
TS04=FROM:FFS:TO:PADS=55

As used in the previous example, the predefined groups represent all
symbols of that type. To create more specific groups see the next
section, “Creating Arbitrary Groups Using TNMs.”

XACT Development System

XACT-Performance Utility

Creating Arbitrary Groups Using TNMs

A TNM (timing name) is a flag that you place directly on your
schematic to tag specific pads, flip-flops, input latches, or RAMs. All
symbols tagged with the TNM identifier are considered a group. Place
TNM attributes directly on your schematic using the following syntax:

TNM=identifier

where identifier is a value that consists of any combination of letters,
numbers, or underscores. Keep the TNM short for convenience and
clarity.

Do not use reserved words, such as FFS, LATCHES, RAMS, or PADS,
Jor TNM identifiers.

You can specify as many groups of end points as is necessary to
describe the performance requirements of your design. However, to
simplify the specification process and reduce the place-and-route time,
use as few groups as possible.

You can use several methods for tagging groups of end points —
placing identifiers on primitive symbols, macro symbols, nets, or load
pins. Which method you choose depends on how the path end points
are related in your design. The following subsections discuss the
different methods.

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each
symbol, as illustrated by the following figure:

XACT Reference Guide 1-73

Volume 1 — Design Entry and Conversion

TNM=FLOPS X4679
Figure 1-9 TNM on Primitive Symbols

In Figure 1-9, the flip-flops tagged with the TNM form a group called
“FLOPS.” The untagged flip-flop is not part of the group.

You cannot use TNMs to group instances of incompatible symbols; for
example, it is incorrect to tag a pad and a flip-flop with the same TNM.
The only compatible predefined groups are flip-flops and input latches,
on which you can use the same TNM.

Place only one TNM on each symbol, load pin, or macro load pin. If
you want to assign more than one identifier to the same symbol, include
all identifiers on the right side of the equal sign (=) separated by a
semicolon (;), as follows:

TNM=joe; fred

Placing TNMs on Macro Symbols

When a macro contains only one symbol type, you can place a TNM
directly on the macro. If the macro contains only flip-flops, all the
flip-flips are identified by the given TNM.

When a macro contains more than one symbol type, use the TNM
identifier in conjunction with one of the predefined groups: FFS,
RAMS, PADS, or LATCHES as indicated by the following syntax
examples:

1-74 XACT Development System

XACT-Performance Utility

TNM=FFS : identifier
TNM=RAMS : identifier
TNM=LATCHES : identifier
TNM=PADS : identifier

If you want to place an identifier on more than one symbol type,
separate each symbol type and identifier with a semicolon (;) as
illustrated by the following examples:

TNM=FFS:FLOPS; PADS : OPADS
TNM=RAMS : MEMS ; LATCHES : INLATS

For example, if multiple flip-flops are contained in the same
hierarchical block, you can simply flag that hierarchical symbol, as
illustrated by the following figure:

— —

—

TNM=FFS:FLOPS;RAMS:MEM

Figure 1-10 TNM on Macro Symbol

In Figure 1-10, all flip-flops included in the macro are tagged with the
TNM “FLOPS” and all RAMs are tagged with the TNM “MEM.” By
tagging the macro symbol, you do not have to tag each underlying
symbol individually.

XACT Reference Guide 1-75

Volume 1 — Design Entry and Conversion

Placing TNMs on Signals or Pins to Group
Flip-Flops

You can easily group flip-flops by flagging a common input signal,
typically either a clock signal or an enable signal. If you attach a TNM
to a signal or load pin, that TNM applies to all flip-flops and/or input
latches that are reached through the signal or pin. That is, PPR traces
forward on that path, through any number of gates or buffers, until it
reaches a flip-flop or input latch. PPR adds that element to the specified
TNM group. This mechanism is called forward tracing.

Placing a TNM on a signal is equivalent to placing that TNM attribute
on every load pin of the signal. Use pin TNM attributes when you need
finer control.

The following figure illustrates the use of a TNM on a net that traces
forward to create a group of flip-flops:

0 D1 D OBUF
_2.) FD 1Q BITO |'0 BIT00 O:D
XNOR c

- o
=1)-02| D OBUF OPAD
o QBT Il'>0 BITO1 O

D O p3| D OBUF OPAD
fp lQ BIT2 ul>o BITO2 O &=

INV
O CLKN
CLK IDO XAETT

Figure 1-11 TNM on Signal Used to Group Flip-Flops

In Figure 1-11, the TNM traces forward to the first two flip-flops,
which form a group called FLOPS. The bottom flip-flop is not part of

The following figure illustrates placing a TNM on a clock pin, which
traces forward to all three flip-flops and forms the group Q_FLOPS:

IBUF A0
'P"E'i}| AINO | [NO TNM=FLOPS 1 .
l/
PAD IBUF
I _BINO INO BO 1
P> P
AND c
INV c
GCLK
IPAD
|_CLKIN |,\0
|Pxx> l/
the group FLOPS.
1-76

XACT Development System

XACT-Performance Utility

D1
D2 2
D Q @
*—
D3 Q3
D Q—
CLOCK
TNM=Q_FLOPS
X4676

Figure 1-12 TNM on Clock Pin Used to Group Flip-Flops

Creating New Groups from Existing Groups

XACT Reference Guide

In addition to naming groups using the TNM identifier, you can also
define groups in terms of other groups. You can create a group that is a
combination of existing groups by defining a TIMEGRP attribute as
follows:

newgroup=existing_grpl s existing_grp2 [s existing_grp3 . . .]

where newgroup is a newly created group that consists of existing
groups created via TNMs, predefined groups, or other TIMEGRP
attributes.

Mentor Users — You must specify a leading equal sign (=) when
defining TIMEGRP attributes, for example, =newgroup. The preceding
equal sign lets Mentor know that this is a user-defined attribute. Refer
to the Mentor Interface User Guide for more information.

TIMEGREP attributes reside in the TIMEGRP primitive, as illustrated in
Figure 1-13. Once you create a TIMEGRP attribute definition within a
TIMEGRP primitive, you can use it in the TIMESPEC primitive. Each
TIMEGRP primitive can hold up to eight group definitions. Since your
design might include more than eight TIMEGRP attributes, you can use
multiple TIMEGRP primitives. ’

Volume 1 — Design Entry and Conversion

TIMEGRP
some_ffs=flips:flops

X4330

Figure 1-13 TIMEGRP Primitive

You can place TIMEGRP attributes in either of two places: in the
TIMEGRP primitive on the schematic as discussed in this section or in
the constraints (CST) file. See the XACT Libraries Guide for more
information about specifying timing requirements in the constraints
file.

You can use TIMEGRP attributes to create groups using the following
methods:

e Combining multiple groups into one
o Creating groups by exclusion
o Defining flip-flop subgroups by clock sense

The following subsections discuss each method in detail.

Combining Multiple Groups into One

You can define a group by combining other groups. The following
syntax example illustrates the simple combining of two groups:

big_group=small_group:medium_group

In this syntax example, small_group and medium_group are existing
groups defined using a TNM or TIMEGRP attribute. Within the
TIMEGRP primitive, TIMEGRP attributes can be listed in any order;
that is, you can create a TIMEGRP attribute that references another
TIMEGREP attribute that appears after the initial definition.

A circular definition, as shown below, causes an error.

many_ ffs=ffsl:ffs2
ffsl=many ffs:ffs3

1-78 XACT Development System

WARNING !

XACT-Performance Utility

Creating Groups by Exclusion

You can define a group that includes all elements of one group except
the elements that belong to another group, as illustrated by the
following syntax examples:

groupl=group2 : EXCEPT : group3

where groupl represents the group being defined; group2 and group3
can be a valid TNM, predefined group, or TIMEGRP attribute.

As illustrated by the following example, you can specify multiple
groups to include or exclude when creating the new group.
groupl=group2 s group3 s EXCEPT : group4: group5

Do not use reserved words, such as FFS, PADS, RISING, FALLING, or
EXCEPT, as group names or TNMs.

Defining Flip-Flop Subgroups by Clock Sense

You can create subgroups using the keywords RISING and FALLING
to group flip-flops triggered by rising and falling edges.
group]=RISING: ffs
group2=RISING:[fs_group
group3=FALLING: ffs
group4=FALLING: ffs_group

where groupl to group4 are new groups being defined. The ffs_group
must be a group that includes only flip-flops.

Keywords, such as EXCEPT, RISING, and FALLING, appear in the
documentation in upper case; however, you can enter them in the
TIMESPEC primitive in lower or upper case.

The following example defines a group of flip-flops that switch on the
falling edge of the clock.

falling ffs=FALLING:ffs

Creating Groups by Pattern Matching

XACT Reference Guide

When creating groups, you can use wildcard characters to define groups
of symbols whose associated signal names match a specific pattern:

group=predefined_group(pattern)

where predefined_group can only be one of the following predefined
groups — FFS, LATCHES, PADS, or RAMS. A pattern is any string of
characters used in conjunction with one or more wildcard characters.

When specifying a signal name, you must use its full hierarchical path
name so PPR can find the signal in the flattened design.

Volume 1 — Design Entry and Conversion

For flip-flops, input latches, and RAMs, specify the output signal name.
For pads, specify the external signal name unless you placed a BLKNM
or HBLKNM on the pad in the schematic; in this case, you should
specify its value instead.

In XACT-Performance, any place you specify a predefined group, you
can specify a predefined group qualified by a pattern as follows:

TSidentifier=FROM: group(pattern) s TO : group(pattern)=delay

The following example illustrates creating a group that includes the
flip-flops that source signals whose names begin with $113/FRED.

groupl=£f£fs ($1I3/FRED¥*)

The following example illustrates a group that excludes certain
flip-flops whose output signal names match the specified pattern:

this_group=£ffs:EXCEPT:ffs(a*)

In this example, this_group includes all flip-flops except those whose
output signal names begin with the letter “a.”

How to Use Wildcards to Specify Signal Names

The wildcard characters, * and ?, enable you to select a group of
symbols whose output signal names match a specific string or pattern.
The asterisk (*) represents any character string. The question mark (?)
indicates a single character.

For example, DATA* indicates any signal name that begins with
“DATA,” such as DATA1, DATA22, DATABASE, and so on. The
string NUMBER? specifies any signal names that begin with
“NUMBER” and end with one single character, for example,
NUMBERI1, NUMBERS but not NUMBER12.

You can also specify more than one wildcard character. For example,
*AT? specifies any signal names that begin with any series of
characters followed by “AT” and end with any one character such as
BAT1, CAT2, and THATS.

How to Define Groups by Signal Name

This subsection gives you more examples of how to create groups by
pattern matching. The following defines a group name *“‘some_latches”:

some_latches=latches ($1I3/xyz*)

The group some_latches contains all input latches whose output signal
names start with “$113/xyz.”

Instead of specifying just one pattern, you can also specify a list of
patterns separated by a colon (:) as illustrated below:

some_ffs=ffs(a*:b?:c*d)

XACT Development System

XACT-Performance Utility

The group “some_f£fs” contains flip-flops whose output signal names:
e Start with the letter “a”
e Contain two characters; the first character is “b”

e Start with *“c” and end with “d”

When Multiple Specifications Apply to the Same
Path

When you apply more than one From-To specification to the paths
between a given pair of end points, PPR analyzes all of them. In this
case, PPR chooses the fastest one, which might not be the specification
you want. For example, suppose you have the following timing
requirements:

TS_ALL=FROM:PADS:TO:FFS:=30
TS_SLOWER=FROM: PADS:TO: SLOW_FFS=40

For TS_SLOWER to control the paths to SLOW_FFS, it would have to
disable TS_ALL on these paths; however, no specification can disable
another. Therefore, the TS_SLOWER paths are specified faster than
intended. You can avoid this problem by either of two methods:

e Make sure your broad specifications are always the slowest ones.
You could create a FAST_FFS group instead of a SLOW_FFS
group, as follows:

TS_ALL=FROM:PADS:TO:FFS=40
TS_FASTER=FROM:PADS:TO:FAST_FFS=30

¢ Explicitly exclude slower paths from faster, more general
specifications by using a TIMEGRP EXCEPT statement, as
explained in the “Creating Groups by Exclusion” section.

Using this method, you could create a TIMEGRP attribute to define
the FAST_FFS group as a complement of the SLOW_FFS group as
follows:

FAST_FFS=FFS:EXCEPT: SLOW_FFS

In the TIMESPEC primitive, you can define two non-overlapping
specifications:

TS_FASTER=FROM:PADS:TO:FAST_FFS=30
TS_SLOWER=FROM: PADS: TO: SLOW_FFS=40

Ignoring Selected Paths

In a design, some paths do not require path analysis. These are paths
that exist in the design, but are never used during time-critical
operations. If you indicate a timing requirement on these paths, more

XACT Reference Guide 1-81

Volume 1 — Design Entry and Conversion

important paths might be slower, which can result in failure to meet the
timing requirements. You can use IGNORE to disable any paths that
you do not need to control by using the following syntax within the
TIMESPEC primitive:

TSid=IGNORE

Attaching this TS flag to a net or load pin causes PPR to ignore any
paths that include the net or load pin.

You cannot perform path analysis in the presence of combinational
loops. Therefore, PPR ignores certain connections to break
combinational loops. You can use IGNORE to direct PPR to ignore
specified nets or load pins, consequently controlling how loops are
broken.

Specifying Time Delay in TS Attributes

Nanoseconds are the default units for specifying delay times in TS
attributes. However, after specifying the maximum delay or minimum
frequency numerically, you can enter the unit of measure by specifying
the following:

e NS for nanoseconds
e MHZ for megahertz
¢ US for microseconds
e KHZ for kilohertz

The XNFPrep program converts all units to nanoseconds and rounds
them to 0.1 ns accuracy.

The following subsections discuss alternate methods of specifying time
delay in TS attributes:

e Selecting Automatic Delay

o Specifying a TS Attribute Delay in Terms of Another

Selecting Automatic Delay (AUTO)

If you want to minimize delays along a certain group of paths but are
unsure what delay to request, use AUTO in place of numerical values
on the TS attributes as follows:

TS_PADS=FROM: PADS: TO: PADS=AUTO

PPR chooses a moderately aggressive path delay target for the specified
paths and attempts to meet this target.

XACT Development System

XACT-Performance Utility

Specifying a TS Attribute Delay in Terms of
Another

Instead of specifying a time or frequency in a TS attribute definition,
you can specify a multiple or division of another TS attribute. This is
useful in a system where all clocks are derived from a master clock; in
this situation, changing the timing specification for the master clock
changes the specification for all clocks in the system.

Use the syntax below to specify a TS attribute delay in terms of
another.

TSidentifier=specification s reference_TS_attribute [* , /1 number

where number can be either a whole number or a decimal. The
specification can be any From-To statement as illustrated by the
following examples:

FROM: PADS:TO: PADS

FROM: groupl : TO: group2
FROM: tnm_identifier: TO : FFS
FROM:LATCHES : TO: groupl

Use “*” to represent multiplication and *“/” to represent division. The
specification type of the reference TS attribute does not need to be the
same as the TS attribute being defined; however, it must not be
specified in terms of AUTO or IGNORE.

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays (not frequencies).

TS08=FROM:FFS:TO:PAD | The paths between flip-flops and
S=TS05*10 pads are placed and routed so that
their delay is at most 10 times the
delay specified in the TSOS attrib-
ute.

TS1=FROM:PADS:TO: PAD | The paths between input and output
S=TS07/8 pads are placed and routed so that
their delay is at most one-eighth the
delay specified in the TSO7 attrib-
ute.

When a reference attribute is specified as a frequency, a multiple
represents a faster specification; a division represents a slower
specification.

XACT Reference Guide 1-83

Volume 1 — Design Entry and Conversion

You can also specify a TS attribute in terms of a TS attribute that is
already a specification of another. The following example provides an
illustration.

TS09=FROM:FFS:TO:FFS=50
TS10=FROM:FFS:TO:PADS=TS09*2
TS11=FROM: PADS:TO:PADS=TS10*4

Sample Schematic Using End-Point Specifications

TNM identifiers define symbols or groups of symbols that are used in
timing specifications. They can also define other groups. Figure 1-14
shows an example of a TNM attribute attached to an individual symbol.
In this circuit, the flip-flop D_FF has the attribute TNM=D_FF

attached to it.
vce
5
FDCE
Do b d Qo > Q0_OUT 5oy
INV CE OBUF
CLR
PE——
l FDCE
501 o = Q1 > QLOUT ooy
XOR2 OBUF
CcLr
—— 1
FDCE
' c2 D2 o 3 Q2 > Q2.0UT oy
XOR2 OBUF
AND2 PCLR
—— 2
FDCE a8 ouT
c3 D D3 D 4d Q3 > 3_OU OPAD]
XOR2 ce — D._EN OBUF
AND3 CLR ==
——1 3
D_IN AND4 FOCE RDATA RD
PR DN DATA D g > RD-OUT opamy
KN 1BUF —CE OBUF
TPAD ~ CLK C
P CLR
T D_FF
1 TNM=D_FF
GND
TIMEGRP TIMESPEC
Q_FFS=FFS:EXCEPT:D_FF TS_CLK_CYCLE=FROM:FFS:TO:FFS:50

TS_CTR=FROM:Q_FFS:TO:PADS=25
TS_D_O=FROM:D_FF:TO:PADS=50
TS_D_I=FROM:PADS:.TO:D_FF=50

Figure 1-14 Example of Using TNMs and TIMEGRPs in Your
Schematic

The TIMEGRP symbol contains an attribute that defines a group of
flip-flops called Q_FFS, which includes all flip-flops in the schematic

1-84 XACT Development System

XACT-Performance Utility

except the one labeled D_FF. You can then use the group Q_FFS to
create timing specifications in the TIMESPEC primitive. The flip-flop
D_FF has its clock enable driven at 1/16th of the clock frequency;
therefore, its flip-flop to pad and pad to flip-flop timing specifications
are longer than the flip-flop to pad specifications in the Q_FFS group.

Default Specifications Inserted by PPR

The three types of paths that involve flip-flops — flip-flops to
flip-flops, pads to flip-flops, and flip-flops to pads — usually benefit
from timing specifications. If you do not specify any timing
specification to control these paths, PPR applies the following
specifications:

e Paths that start at pads and end at flip-flops

TS_DEFAULT_FROM_PADS_TO_FFS=FROM: PADS: TO:FFS=
AUTO

e Paths that start at flip-flops and end at flip-flops

TS_DEFAULT_FROM_FFS_TO_FFS=FROM:FFS:TO:FFS=
AUTO

e Paths that start at flip-flops and end at pads

TS_DEFAULT_FROM_FFS_TO_PADS=FROM:FFS:TO: PADS=
AUTO

Defining Timing Requirements Using Path-Type

Specifications

XACT Reference Guide

The path-type specifications described in this section are provided for
backward compatibility with previous versions of XACT-Performance.
Since it is more complicated to define arbitrary timing requirements
using path-type specifications, Xilinx strongly recommends that you
use From-To statements, TIMEGRP attributes, and TNMs. Refer to
“Defining Timing Requirements Using Groups” at the beginning of
this chapter for more information.

This section discusses the following concepts:
¢ The Four Basic Path Types

e When Multiple Path-Type Specifications Apply to the Same
Flip-Flop

e The Forward Tracing Mechanism

e Combinational Delay and Timing Specifications on Clock-Related
Paths

Volume 1 — Design Entry and Conversion

Specifying a Path-Type TS Attribute Delay in Terms of Another
Placing TS Flags

Other Specification Parameters

¢ How are Path-Type and End-Point Specifications Different?

The Four Basic Path Types

There are four basic path types in any design:

e Pad to setup (P2S) — A path that starts at an input to the device and
ends at an input pin of a flip-flop.

e Clock to setup (C2S) — A path that starts at the Q pin of a flip-flop
and ends at an input pin of a flip-flop.

e Clock to pad (C2P) — A path that starts at the Q pin of a flip-flop
and ends at an output of the device.

e Pad to pad (P2P) — A purely combinatorial path that starts ata
device input and ends at a device output.

You can define TS attributes that correspond to these four basic path
types. TS attributes reside in the TIMESPEC attribute, decribed at the
beginning of this chapter. For clock-related paths (C2S, C2P, P2S), you
need to assign a TS attribute to the schematic by attaching a TS flag,
described in the “Placing TS Flags” section. For P2P specifications,
you do not need to place TS flags on your schematic.

TS flags are propagated forward until they reach a flip-flop. When
more than one clock-type specification applies to the same flip-flop,
some specifications override others. See “When Multiple Path-Type
Specifications Apply to the Same Flip-Flop” for more information.

Although you can use TNMs and From-To syntax in the same design
with path types, Xilinx discourages mixing end-point and path-type
specifications.

The following subsections describe each path type in detail.

Clock to Setup (C2S, DC2S)

TSidentifier=C28 : clock_period [:high_time]
TSidentifier=DC28:default_clock_period [:high_time]

The C2S or DC2S parameter enables you to specify timing information
for paths from Q outputs to non-clock flip-flop inputs, that is, D, CE,
PRE/SD, or CLR/RD. The following figure illustrates a C2S path:

XACT Development System

XACT Reference Guide

XACT-Performance Utility

INTERCONNECT
& COMBINATORIAL
LOGIC

L 1
CLOCK 8

Figure 1-15 Clock-to-Setup Configuration

X4314

Clock_period represents the length of one clock signal, which indicates
the interval from a rising edge to the next rising edge. High_time is an
optional parameter that represents the clock period high time.
High_time must be less than clock_period, and is only required when
there are paths between flip-flops clocked by different edges of the
same clock net. If high_time is not specified, PPR assumes it is one-half
of the clock period (50% duty cycle).

A C2S or DC2S specification applies to a path between two flip-flops if
it applies to both the sourcing and the destination flip-flops.

In its default mode, PPR does not control paths between two flip-flops
tagged by different C2S specifications. To control such paths, set the
PPR command-line parameter ‘‘user_faster_c2s” to TRUE. In this case,
PPR uses the faster of the requirements at the two ends and the
complete period, even if different edges clock the two flip-flops. Refer
to the XACT Libraries Guide for more information.

If the flip-flop at either end of a path has no associated timing
specification, the path is not controlled.

With end point specifications, you can directly specify different
requirements for arbitrary source — destination pairs. Since the end
point method is easier than attaching C2S specifications to flip-flops so
that the faster of the two is always appropriate, the end point style is
preferable. Refer to “Defining Timing Requirements Using Groups” at
the beginning of this chapter for more information on using end points.

If the same specification governs two flip-flops in a clock-to-setup path
clocked by different clock edges, the high time or the low time of the
C2S specification controls the path. The high time is used if the
sourcing flip-flop is rising-edge triggered, and the low time is used if
the sourcing flip-flop is negative-edge triggered. If you do not specify
the optional high time in the C2S specification, the system assumes a
50% duty cycle.

Examples of TS attributes using C2S and DC2S are as follows:

Volume 1 — Design Entry and Conversion

TS01=DC2S:40:25 | The default clock-to-setup time is a period
of 40 ns with a high time of 25 ns. You do
not need to attach a TS flag for TSO1 to any
nets or load pins in the schematic because it
represents a default value.

TS02=C2S:200 The clock-to-setup time for any pair of flip-
flops reachable from a net with a TS02 flag
attached is 200 ns.

TS03=C28:40MHZ | The clock-to-setup frequency for any pair of
flip-flops reached by tracing forward from a

net with a TSO03 flag attached is 40 MHz.

Pad to Setup (P2S, DP2S)

TSid=P2P :pad_to_pad_time:source:destination
TSid=DP2P : default_pad_to_pad_time

The P2S or DP2S parameter enables you to specify timing information
from external pads to non-clock flip-flop inputs, that is, D, CE,
PRE/SD, or CLR/RD. The following figure illustrates a P2S path:

INTERCONNECT
& COMBINATORIAL
LOGIC

j >
X4312 CLOCK

Figure 1-16 Pad-to-Setup Configuration

Pad_to_setup_time represents the desired time from external pads to
the inputs. Source specifies an external pad. When specifying the
source pad, you must use the hierarchical name for the pad listed in the
XNF file. You can substitute part of the pad name with a wildcard
character (* or ?). You cannot specify only a wildcard symbol as the
source pad; use DP2S if you want to specify a default timing
specification for all paths from external pads to inputs. Refer to the
following table for the proper usage.

Occasionally, two or more unqualified P2S TS attributes propagate
forward to the same flip-flop. In this case, PPR uses the fastest
specification to control all paths from pads to this flip-flop. In addition,
PPR applies all P2S specifications qualified by a pad name or partial
pad name to the paths from the corresponding pads.

Examples of TS attributes using P2S and DP2S are as follows:

XACT Development System

XACT Reference Guide

XACT-Performance Utility

TS02=DP2S:10 The default pad-to-setup time is 10 ns.
You do not need to attach a TS flag for
TSO02 to any nets in the schematic be-
cause it represents a default value.

TS04=P2S:110US The pad-to-setup time for any flip-flop
reachable from a net with a TS flag for
TS04 is 110 ps.

TS06=P2S:25MHZ:A* | The frequency of paths from pads named
with “A” as the first character to flip-
flops that can be reached by tracing for-
ward from a net with the TS06 flag at-
tached is 25 MHz.

Clock to Pad (C2P, DC2P)

TSid=C2P : clock_to_pad_time [:destination]
TSid=DC2P : default_clock_to_pad_time

The C2P parameter enables you to specify timing information from Q
outputs to external pads. DC2P represents the default timing
specification for all paths from Q outputs to external pads in the design.
The following figure illustrates a C2P path:

INTERCONNECT
& COMBINATORIAL
LOGIC

It
CLOCK X4315

Figure 1-17 Clock-to-Pad Configuration

Clock_to_pad_time represents the desired time from Q outputs to
external pads. Destination specifies an external pad. When specifying
the destination pad, you must use the hierarchical name for the pad
listed in the XNF file.

You can substitute part of the pad name with one or more wildcard
characters. You cannot specify only a wildcard symbol as the
destination pad; use DC2P if you want to specify a default timing
specification for all paths from Q outputs to external pads. Refer to the
following table for examples of proper usage.

Occasionally, two or more unqualified C2P TS attributes propagate
forward to the same flip-flop. In this case, PPR uses the fastest
specification to control all paths from flip-flops to pads. In addition,

Volume 1 — Design Entry and Conversion

PPR applies all C2P specifications qualified by a pad name or partial
pad name from the paths to the corresponding pads.

Examples of TS attributes using C2P and DC2P are as follows:

TS01=DC2P:25 The default clock-to-pad time is
25 ns. You do not need to attach
TSO01 to any nets or load pins in
the schematic because it repre-
sents a default value.

TS04=C2P:110US:*/A_OUT | The delay of a path signal from a
Q output to a pad whose name
ends with “/A_OUT” is 110 ps if
the flip-flop is reachable from a
net or load pin with the TS04 flag
attached.

TS07=C2P:8MHZ The frequency of paths to pads
from a flip-flop reached by trac-
ing forward from a net with TS07
attached to it is 8 MHz.

Pad to Pad (P2P, DP2P)

TSid=P2P: pad_to_pad_time:source:destination
TSid=DP2P :default_pad_to_pad_time

The P2P parameter enables you to specify timing information for paths
between external pads. DP2P represents the default timing specification
for all paths between external pads. The following figure illustrates a
P2P path:

INTERCONNECT
& COMBINATORIAL
LOGIC

X4313
Figure 1-18 Pad-to-Pad Configuration

Pad_to_pad_time represents the desired time for paths running between
external pads. Source and destination are required parameters that
specify specific pads. When specifying a source or destination pad, you
must use the hierarchical name for the pad listed in the XNF file. You
can substitute part of the pad name with a wildcard character (* or ?).
Refer to the following table for an example.

XACT Development System

XACT-Performance Utility

Examples of TS attributes using P2P and DP2P are listed below.

TS03=DP2P:100KHZ | The default frequency for pad-to-pad sig-
nals is 100 kHz. TSO3 is not attached to
any nets.

TS05=P2P:25:*:DI* | The time from any pad input to pad out-
puts with names that begin with “DI” is
25 ns.

You cannot, however, use a wildcard for both the input and output pad
names, as illustrated by the following example.

TS10=P2P:70:*:*

This TS attribute generates an error because you should use DP2P to
specify default timing requirements for this path type.

The default P2P specification must define the slowest P2P requirement
of the system because the default specification applies globally to all
pad-to-pad paths.

For P2P specifications, you do not need to place TS flags on nets in
your schematic since they identify by name the IOBs to which they
apply. The IOB name is usually the name of the signal between the pad
and I/O primitives, unless you use a BLKNM attribute to name an IOB
explicitly. See the appropriate CAE Interface User Guide for more
information.

Figure 1-19 shows an example of a purely combinatorial circuit and its
corresponding timing specification. The timing requirement is 50 ns for
all P2P paths except those leading to CS1, for which the timing
requirement is 30 ns.

XACT Reference Guide 1-91

Volume 1 — Design Entry and Conversion

TIMESPEC
TS01=DP2P:50
A0 TS02=P2P:30:*:CS1

ADDRO

0
Y

@
[
b

ADDR1 A1l

0
\

@
[
T

ADDR2 A2 SEL1 N CSst

<
W oBur

0
Y

@
c
S

AND5B1

ADDR3 A3

AV

N, CS2
1/OBUF

ADDR4 A4

Y

LU
L

@
[
T

ADDRS A5

v/

ADDR6 A6

AV

ADDR7 A7

AV

ADDRS A8

0 0 0 0 0 0

Y

X2796

@
C
T

Figure 1-19 Specifying Timing Requirements on
Combinatorial Paths

When Multiple Path-Type Specifications Apply to
the Same Flip-Flop

Sometimes two or more timing specifications apply to the same path.
XACT-Performance must then determine which timing specification to
use. Since C2S, P2S, and C2P path-type specifications use flip-flops as
anchor points, the pin at which the signal arrives at a flip-flop
determines which timing specification takes precedence for each type
as follows:

e Default TS attributes, such as DC2S, DP2S, and DC2P, have the
lowest priority. A “D” preceding the path type indicates a default
value.

e TS attributes of type C2S, P2S, and C2P that have a flag attached to
a net that can be traced forward to the flip-flop’s clock pin override
default TS attributes.

o TS attributes of type C2S, P2S, and C2P that have a flag attached to
a net that can be traced forward to an input pin (other than a clock
pin) override TS attributes of other types.

1-92 XACT Development System

XACT-Performance Utility

PPR analyzes all P2S or C2P specifications qualified by a pad or

partial pad name.

The Forward Tracing Mechanism

XACT Reference Guide

The forward tracing mechanism propagates an attribute through
multiple levels of combinatorial logic until it reaches a flip-flop.

Specifications apply only at those flip-flops that can be reached by
tracing forward from the tagged net or load pin. Whenever the system
reaches a flip-flop by forward tracing, it stops. The examples in
Figure 1-20 and Figure 1-21 show cases where improper placement of
TS attributes results in the system ignoring timing specifications.

In Figure 1-20, the C2S specification TS01 is forward traced and
attached to flip-flop B only. To control the path from A to B, some
DC2S or C2S specification must also be applied to flip-flop A. Since
no such specification for A is supplied here, that path is not controlled.

TIMESPEC
TS01=C2S:50

CTRLIN N CTRL

<<
1BUF
— AN N_DA — aa DB [@B, BOUT
k™ Tso1 oBuF
CLK1_IN CLK1 A [_ B
< "{/\ ‘ x2748

Figure 1-20 Improper Specification — Example 1

In Figure 1-21, the system cannot forward trace the C2P specification
TS22 to any flip-flops and it is ignored. When a timing specification is
ignored, PPR generates appropriate warnings onscreen and in the log
file.

TIMESPEC
TS22=C2P:15

CTRLIN N_ CTAL
IBUF

(e

A_IN AN DA o oA DB [T 9B B_OuT

—
fo TS22 OBUF
CLK1_IN CLK1 A ,—_‘ B
! N
< 1> ¢

Figure 1-21 Improper Specification — Example 2

X2795

Volume 1 — Design Entry and Conversion

Combinational Delays and Timing Specifications
on Clock-Related Paths

Flip-flop specifications (C2S, P2S, and C2P) incorporate delays, such as
setup time, input/output buffer delays, and clock-to-Q delays. For
example, if a P2S time is specified as 30 ns, and the clock signal has a
setup time of 6 ns, then PPR uses 24 ns (30 — 6 = 24) as the maximum
time allowed from the pad, through the input buffer and any intervening
logic, to the D pin on the flip-flop.

Specifying a Path-Type TS Attribute Delay in Terms
of Another

Use the syntax below to specify a TS attribute in terms of another.
TSidentifier=path_type s reference_TS_attribute[* , /1 integer

where path_type is P2P, C2P, C2S, or P2S. The path type must not be
specified in terms of a LINK, AUTO, or IGNORE path type. Use “*”
to represent multiplication and “/” to represent division.

Examples of specifying a TS attribute in terms of another are as
follows. In these cases, assume that the reference attributes were
specified as delays.

TS08=C2P:TS05*10 | A C2P path associated with the TSO8 at-
tribute is placed and routed so that its
delay is at most 10 times the delay
specified in the TSOS attribute.

TS14=P2P:TS07/8 | A P2P path associated with the TS14 at-
tribute is placed and routed so that its
delay is at most one-eighth the delay
specified in the TSO7 attribute.

A circular definition, as follows, causes an error:

TS01=C2P:TS02*2
TS02=P2P:TS01*3

When a reference attribute is specified as a frequency, a multiple
represents a faster specification; a division represents a slower
specification.

Placing TS Flags

This section describes general guidelines for placing TS flags. For
specific instructions on placing TS flags with your particular CAE
interface, refer to the appropriate Xilinx Interface User Guide for your
schematic editor.

XACT Development System

XACT Reference Guide

XACT-Performance Utility

A TS flag attaches timing information from a non-default TS attribute
to a net, load pin, or macro load pin in the schematic.

You cannot place a TS flag on a source pin.

After you place the TS flags on the schematic, PPR reads this timing
information and applies it to the relevant paths in the design using the
forward tracing mechanism to determine the flip-flop to which the
specification applies.

If your schematic entry package does not allow you to place TS flags
on pins, you can place the TS flag on the net that propagates forward to
the appropriate load pin. If you need to flag only part of a net, use a
buffer to separate these pins from others on the net. Then place the TS
flag on the output net of the buffer.

You do not need to place TS flags on the schematic for default TS
attributes because timing information from default TS attributes applies
throughout the design. Also, you do not need to place TS flags for P2P
attributes.

Careful placement of TS flags ensures that PPR properly interprets
your timing specifications. The following sections discuss the proper
placement of TS flags.

Placing TS Flags on the Schematic

Figure 1-22 provides an example of how PPR interprets information
represented by TS attributes and TS flags. TSO1 represents a default
specification that applies to the entire design. TSO1 ensures that PPR
maps, places, and routes the net so that no clock-to-setup paths in the
design exceed 50 ns. TS02 is a non-default specification and has a
TS02 flag attached to a net (CLK2). TS02 supersedes the default
specifications for paths that start and end at a flip-flop reachable by
CLK2.

PN TIMESPEC
TS01=DC2S:50
CLK1 | TS02=C2S:30

CLK2
TS02

Figure 1-22 Default and Non-Default Timing Specifications

As illustrated by the following figure, flip-flop-related timing
specifications (C2P, P2S, C2S) do not need to be attached to a net
directly connected to the flip-flop. PPR uses forward tracing to

Volume 1 — Design Entry and Conversion

determine which flip-flops the timing specification controls. In both
cases, TS02 traces forward to the flip-flop.

CLKIN CLOCK
TS02
CLKIN [N CLOCK
D TS02 |~

Figure 1-23 Equivalent Specifications on Clock Net

The timing specification for TS flags attached to a clock net are applied
to every flip-flop to which the clock net can be forward traced.
However, since TS flags can be placed on signals other than clock nets,
you can attach TS flags so that flip-flops clocked by the same signal
have different timing specifications. Forward tracing stops upon
reaching a flip-flop or input latch.

Figure 1-24 illustrates an example of flip-flops with a common clock
but different timing specifications. The C2P specification for paths
sourced by Q2 and Q3 is 80 ns, and the C2P specification for paths
sourced by Q1 is 120 ns.

D1
o oY%
Ts03
— TIMESPEC
TS02=C2P:80
TS03-C2P:120
D2 2
o o
-
D3
o o=
cLOCK
Ts02

Figure 1-24 Flip-Flops Clocked by Same Signal, but with
Different Timing Specifications

A TS flag can be attached to any of a flip-flop’s input nets, since its
corresponding specification is traced forward to the flip-flop.

As illustrated by the following figure, a TS flag attached to a net
sourced by the flip-flop’s Q output does not apply to the flip-flop, as
the flip-flop is not along the forward path from the net to which the TS

XACT Development System

XACT-Performance Utility

flag is attached. In Figure 1-25 the P2S specification represented by
TS02 is applied only to flip-flop B.

TIMESPEC
TS02=P25:75

Figure 1-25 Example of Timing Specification that Cannot
Be Traced to Both Flip-Flops

To apply the P2S specification to flip-flops A and B, place the TS02
flag as shown in Figure 1-26.

TIMESPEC
TS02=P2S:75

Figure 1-26 Example of Timing Specification that Can Be
Traced to Both Flip-Flops

XACT Reference Guide 1-97

Volume 1 — Design Entry and Conversion

As illustrated by the following example, you need to carefully place TS
flags that represent C2S specifications because they involve pairs of
flip-flops. Figure 1-27 shows a design where the C2S timing
specification cannot be interpreted because it can only be traced
forward to one flip-flop.

TIMESPEC
TS10=C28:50

LOGIC

—{CE TS10 — CE

;

Figure 1-27 Improper Placement of TS Flag for
Clock-to-Setup Specification

To ensure the specification is applied correctly, apply the TS flag to a
net that feeds all flip-flops to which it applies, as illustrated in
Figure 1-28, where TS10 is attached to the clock enable net.

1-98 XACT Development System

XACT Reference Guide

XACT-Performance Utility

TIMESPEC
T1S10=C2S:50

LOGIC

D Q D Qf—
—{CE — CE

Figure 1-28 Proper Placement of TS Flag for Clock-to-Setup
Specification

™

TS10

Placing TS Flags on Cascaded Counters

If your design contains a cascaded counter where a signal from one
counter enables another via its CE pin and both counters are driven by
the same clock, the whole circuit does not need to work at the
frequency of the clock signal. If you place a single TS flag as shown in
Figure 1-29, then the specification is applied to the whole circuit.

TIMESPEC
TS14=C25:40
C16BCRD
m e
atf—
?— Qzf—
| C16BCRD
e @
TC QofF—
_RD atfp—
o2 l—
ENABLE |ce B[
CLOCK Tcb—
® RD X2546

TS14

Figure 1-29 Cascaded Counter with Timing Controlled
by One TS Attribute

Volume 1 — Design Entry and Conversion

1-100

You can use an additional TS flag, placed on the net connecting the
counters, to clock the second counter at a fraction of the first, as
illustrated in Figure 1-30.

TIMESPEC

TS14=C2S:40
TS15=C2S:TS14°16

C16BCRD

m ——

atf—

{i- Q2f—

| C16BCRD
e ®
Tc Q—
RD Qll—
m ———
Ts15 L_ENABLE |ce OO
CLOCK Tchb—
Ts" 4 RD X2547

Figure 1-30 Cascaded Counter with Timing Controlled
by Two TS Attributes

Other Specification Parameters

The following subsections describe other parameters you can use when
defining TS attributes:

LINK (Link TS Attributes)

The LINK parameter creates one TS attribute that incorporates multiple
TS attributes. You can use the LINK parameter to reduce clutter from
TS attributes within your schematic.

LINK:TSid_Il:TSid_2[:T8Sid_3]

For example, suppose TS0S5 represents a clock-to-pad value, TS06
represents a pad-to-setup value, and TS07 represents a clock-to-setup
value. TSO08 is defined as follows:

TS08=LINK:TS05:TS06:TS07

A TS flag for TS08 could then be attached to a net, creating the same
effect as attaching TS flags for TS05, TS06, and TSO7 to the net.

TSO05, TS06, TSO7 must represent a clock-to-pad, clock-to-setup,
pad-to-setup, or LINK parameter. If you specify other values, XNFPrep
generates an error in its report file.

XACT Development System

IGNORE (Ignore Path Type)

When a TIMESPEC attribute is defined using the following syntax,
PPR ignores paths of the specified type that are not explicitly defined.

TSid=default_path_type: IGNORE

XACT-Performance Utility

Sample Schematic Using Path-Type Specifications

<

NA4_IN N NA4

17
IBUF

— NA3_IN D NA3

1BUF
NA2_IN N_ NA2

TIMESPEC
TS01=DC2P:50
TS02=C2P:40
TS03=C2P:30
TS04=C2P:20

— NAND_O
o D 7> DD [~ @D Dour
IBUF NANDS > _—|>—QOBUF
NA1_IN NA1| [NOR2B1 1
1BUF
- NAO_IN 'l> NAO
1BUF
<_-\/D_EN_IN l/'\ D_ENABLE
IBUF 7S04 o
DFF
— AN N DA X oaAl{) 08B [g a8 —) bC| [d-@c¢ D c_out
) | B ° o et = 0BUF
TS03 OR2
IBUF AND2 B L L e
A ——1
O—‘I >—| B_OUT
CLK1_IN CLK1 I~ B_
— Voeur
BUFGP o
CLK2_IN N CLK2 %UF
< D
BUFGP TS02 s

Figure 1-31 Example of Schematic Using XACT-Performance

The following notes explain the example in Figure 1-31.

e TS01=DC2P:50is a TS attribute that specifies a default clock-to-pad
time of 50 ns. Only one default specification is allowed for each path

XACT Reference Guide

type.

The TS02=C2P:40 TS attribute has a corresponding TS flag attached
to net CLK2. This net drives the clock pins of flip-flops B, C, and D.
TSO02 overrides the default specification (TSO1) for these flip-flops.

The clock-to-pad paths that TS02 is specifying run from these
flip-flops forward to output pads. The net CLK2, flagged with TS02,
is not itself on these paths. Instead, the single flag on a clock net
controls several paths associated with the flip-flops that the clock net

drives.

1-101

Volume 1 — Design Entry and Conversion

1-102

e The TS03=C2P:30 TS attribute has a corresponding TS flag attached

to net B_OUT. This net can be forward traced to the data inputs of
flip-flops C and D. It overrides the default specification (TS01) and
other specification (TS02) for each flip-flop.

The TS04=C2P:20 TS attribute has a corresponding TS flag attached
to the net D_ENABLE. This net drives the clock-enable input of
flip-flop D. TS04 is the second specification that arrives at flip-flop
D; it overrides TS03 because it is a faster specification. The general
rule is that when two or more specifications of the same level arrive
at a flip-flop, the system applies the fastest timing specification
unless a pad name is specified.

All flip-flop-related path-type timing specifications are assumed to
be relative to the clock pin on the flip-flops being analyzed. Clock
skew and input clock delay are not considered during the path
analysis.

How are Path-Type and End-Point Specifications

Different?

You can use both path-type specifications and end-point specifications
to specify the same set of paths as shown in the following table:

Path-Type End-Point Specifications
Specifications
TS01=C2S:20 TS01=FROM:FFS:TO:FFS=20
TS02=P2S:20 TS02=FROM:PADS:TO:FFS=20
TS03=C2P:20 TS03=FROM:FFS:TO:PADS=20
TS04=P2P:20 TS04=FROM:PADS:TO:PADS=20

However, the two specification types differ in the following ways:

e A C2S or P2S specification does not control a path that ends at the
clock pin of a flip-flop. An end-point specification, on the other
hand, can control a path that ends at the clock pin of a flip-flop.
Therefore, the end-point specification can limit clock skew.

e A slower path-type specification can override a path-type
specification as explained in the section “When Multiple Path-Type
Specifications Apply to the Same Flip-Flop.” No end-point
specification overrides another.

e End-point specifications are the only way to specify timing
requirements on paths that start or end at RAMs or input latches.

XACT Development System

XACT-Performance Utility

Syntax Summary

The following sections summarize the XACT-Performance syntax.

TNM Attributes

The following table lists the syntax used when creating TNMs, which
you enter directly on the primitive symbol, macro symbol, signal, or

load pin.
Flag Type TNM Attribute Syntax
Symbol TNM=groupl [;group2 . .]
Macro symbol | TNM=predefined_group : groupl [;predefined_group: group?2 . . .]
Signal TNM=group
Load pin TNM=group
TIMEGRP Attributes
The following lists the syntax used within the TIMEGRP primitive.
Group Type TIMEGRP Attribute Syntax
Combine new_group=groupl : group2 [z group3 . . .]
Exclude new_group=groupl : [:group2 . ..]sEXCEPT:group3: [:group4 .. .]
Clock Edge | new_group=RISING:groupl
new_group=FALLING: groupl
TIMESPEC Attributes
The following lists the syntax used for parameters that define TS
attributes, which reside in the TIMESPEC primitive.
Spec Type TIMESPEC Attribute Syntax TS Flag
Required?
From-To TSid=FROM: group : TO s group=delay No
C2S8 TSid=C2S:delay [:high_time] Yes
C2pP TSid=C2P :delay [:to_pad_name] Yes
P2S TSid=P2S:delay [.from_pad_name] Yes
P2P TSid=P2P:delay :from_pad_name:to_pad_name No
DC2S TSid=DC2S :delay [:high_time] No
DC2P TSid=DC2P :delay No
XACT Reference Guide 1-103

Volume 1 — Design Entry and Conversion

Spec Type TIMESPEC Attribute Syntax TS Flag
Required?
DP2S TSid=DP2S :delay No
DP2P TSid=DP2P :delay No
Ignore TSid=IGNORE Yes
Link TSid=LINK:TSid_Il:TSid_2 [:TSid_3...] Yes
Auto TSid=path_type : AUTO Yes
1-104 XACT Development System

XACT

Reference
Guide The XNFCVT Program
J

Volume 1

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Printed in U.S.A.

XACT Reference Guide

XACT Development System

The XNFCVT Program

This Program is Compatible with the Families Indicated.

M XC2000 M XC3100 M XC3100A [XC4000H
M XC2000L [XC3000A [XC4000 O XC7200
M XC3000 M XC3000L M XC4000A [XC7300

XNFCVT converts a version 5 Xilinx Netlist Format (XNF) file to a
version 4 or version 1 XNF file. XNFCVT also converts a version 4
XNF to a version 2 XNF, or a version 2 XNF to a version 1 XNF.

XNF syntax has been modified to support improved design flow, new
design features, and new LCA families. As a result, some programs that
function with a version 1 XNF file might not function if a version 2
XNF file is used as input.

A similar situation occurs if a version 4 netlist is used as an input to a
program that expects a version 2 netlist. The XNFCVT program
translates the netlist to the desired version without impacting design
function.

Version 4 and 5 XNF files that contain XC4000 specific symbols cannot
be converted to version 1 or version 2 XNF files.

Currently there are four XNF versions — version 1, version 2,
version 4, and version 5. To determine the version of an XNF file, look
at the first line of the file.

LCANET, 1 (thisisaversion 1 XNF file)
LCANET, 2 (thisis aversion 2 XNF file)
LCANET, 4 (thisis a version 4 XNF file)
LCANET, 5 (this is aversion 5 XNF file)

Syntax

Use the syntax shown here to create a lower version XNF file from
your XNF file.

xnfevt [options] inputl.xnfl output[.xnf]

Files

This section describes the files associated with the XNFCVT program.

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-105

Volume 1 — Design Entry and Conversion

input.xnf

This is the version 5, 4, or 2 XNF file that you want to convert to a
lower version.

output.xnf

Options

This is the target, version 4, 2, or 1 XNF file. You must specify the file
name. See the —v option description in the Options section for
information on specifying the target version.

The XNVCVT program has two command line options.

Do Not Use an AKA File

This option instructs XNFCVT not to use the existing AKA file for
generating hierarchical prefixes; instead, XNFCVT generates a new
AKA file. If you do not specify the —a option, XNFCVT automatically
looks for an AKA file with the same name as the input file. If one is
found, XNFCVT uses that file to generate shortened name prefixes.
This option allows you to use prefixes from previous runs.

Specifies the Version of the XNF File

The —v option specifies the version (4, 2, or 1) of the target XNF file. If
no version number is specified, XNFCVT converts the input XNF file
to the previous netlist version with one exception. If the input file is a
version 4 netlist for an XC4000 design, XNFCVT does not translate the
XN file. If no version is specified, XNFCVT defaults to the earlier
version (5to4,4t02,2to 1).

Summary of Version Differences

1-106

The differences between version 1 and version 2 XNF files are
summarized below.

¢ MAP=type Symbol parameter is added for use with the CLBMAP
and IOBMAP symbols

o A Pin Lock signal flag is added (P flag)

e A Save signal flag is added (S flag)

e Each symbol and signal now have a full hierarchical path name
o The “/” character is included in signal and symbol names

e The LCANET parameter (line 1 of the file) changed from 1 to 2

XACT Development System

XNFCVT

The changes from version 2 to version 4 are listed below.
¢ Pin parameters have been added to aid delay-driven routing

e Symbols have been added to support XC4000 architecture, such as,
WAND, BSCAN, BUFGP, and so forth

¢ Bus record has been added

e OUTFFZ and OBUFZ have been changed to OUTFFT and OBUFT
e Parameters have been added to help with logic placement

e The LCANET parameter (line 1 of the file) has changed from 2 to 4
The changes from version 4 to version 5 are listed below.

e The TIMGRP symbol has been added for XACT Performance

e CY4_01 to CY4_42 carry mode symbols have been added

e The BUFG symbol has been added

e The TS parameter associated with the TIMESPEC symbol are no
longer user parameters (no preceding equal sign is necessary,
although Xilinx supports these as user parameters, too)

e The PAD and PADU symbols are obsoleted and replaced in the
Unified Library by IPAD, OPAD, IOPAD, and UPAD symbols

e The DOUBLE parameter on a PULLUP that is connected to an
external is considered an error; it is not ignored

e Signal names are no longer valid in EQN symbol; use pin names
instead

e LOC ranges must be specified with a colon (:) instead of a
semi-colon (;)

o The INFF and INLAT symbols no longer have the buffered input as
part of the symbol

e The I pin is the invertible pin on a WAND with DECODE specified
instead of the O pin

¢ Pin names have changed for the following (LCANET 4 pin names
are still supported)

— Combinatorial gates have changed input pin names from 1-5 to
10-14

— WORAND input pin names have changed from I1 and 12 to I0
and I1

XACT Reference Guide 1-107

Volume 1 — Design Entry and Conversion

— INLAT and DLAT L pin name has been changed to G
— DFF and DLAT RD pin name has been changed to CLR (clear)
— DFF and DLAT SD pin name has been changed to PRE (preset)

New signal and pin parameters TNM and TSidentifier have been
added

New symbol and EXT parameters TNM and HBLKNM have been
added

The following new IO parameters TTL, CMOS, RES, and CAP have
been added for the XC4000H architecture

The following new symbol parameters CYMODE, SCHNM,
LIBVER, TS, RLOC, USER_R-LOC, U_SET, HU_SET,
RLOC_ORIGIN, and RLOC_RANGE have been added

XNFCVT Program Process

The XNFCVT program removes all attributes for the target LCA file
that are illegal and performs the following functions on an XNF file:

1. Reads in an XNF file

2. Reads and updates the AKA (alias names) file (version 2 to
version 1)

3. Shortens hierarchical path names of symbols and signals
(version 2 to version 1)

4. Generates an XNF file that corresponds to the specified version
5. Removes bus records (version 4 to version 2 or 1)

6. Changes OUTFFT and OBUFT to OUTFFZ and OBUFZ
(version 4 to version 2 or 1)

The AKA File (Version 2 to Version 1 Only)

1-108

The first time XNFCVT is run on a file, it generates an AKA file
containing automatically generated prefix names and the corresponding
path name that the prefixes represent. In each successive run without
the —a option, the AKA file is read with the XNF file. The program
uses existing prefixes from the AKA file for identical path names and
only generates new prefixes when a new path name is encountered. You
can also edit this file to make prefix names more meaningful, as in the
following examples.

XACT Development System

XNFCVT

design.aka alias file created by XNFCVT on Tue Oct 13
14:00:45 1992

WARNING! If you edit the prefix names, DO NOT use the
WARNING! ’‘$’' character as the first character in your
WARNING! own prefix names.

$1 /TOP/U12

$2 /TOP/U28

$3 /TOP/U12/COUNTER

In the XNF file produced by XNFCVT, symbols and signals that are at
the /TOP/U12 level have a shortened name: $1 replaces the path
/TOP/U12. For example, if there is a signal in the input XNF file called
/TOP/U12/SIG1, it is called $1-SIGI in the output XNF file.

Since XNF version I does not support the slash “/” character,; the
hyphen “-” character is used to separate the prefix from the symbol or
signal name.

If you run XNFCVT again after adding a new hierarchy level called
U30 and deleting the one called U28, the changes in the AKA file looks
like the following example:

$1 /TOP/U12

$3 /TOP/U12/COUNTER
$4 /TOP/U30

If you run XNFCVT with the —a option, the existing AKA file is
ignored. The new generated AKA file looks like the following
example:

$1 /TOP/U12

$2 /TOP/U12/COUNTER

$3 /TOP/U30

You can edit the prefixes to make them more meaningful. Prefix names
should not contain the separator character “-”.

Error Messages and Recovery Techniques

Error 201

Error 203

XACT Reference Guide

Unable to open file file_name for reading/writing.

You can get this error if the input file cannot be opened for reading or it
does not exist; check the file name. If the output file cannot be opened
for writing, check if the hard disk is full and if the output file already
exists and is write-protected.

Illegal part, [%s] for target LCANET version.

Designs containing XC4000 parts cannot be converted to any LCANET
version lower than LCANET 4. If you are converting from an
LCANET version 4 or version 5 to any lower version, you must ensure
that you are using either an XC2000 or XC3000 part.

1-109

Volume 1 — Design Entry and Conversion

Error 205 No parttype specified in source file.
The part type must be specified in the input XNF file.

Error 206 Invalid LCANET %s. Valid types 2 and 4 and 5.
XNFCVT converts only XNF versions 5, 4, and 2. (There is no version
3.)

Error 207 Invalid conversion path from LCANET version

source version to target version .

The only legal conversion paths are from:
LCANET version 5t0 4,2, or 1.
LCANET version 4 to 2 or 1.

LCANET version 2 to 1.

All other conversion paths are illegal.

Error 208 Bad command line option.
The -v option requires an input number. This value must be an integer.
Error 211 sym name of type symtype is illegal for target
LCANET net version targetversion.

A symbol of a type that is illegal in the target LCANET version was
found.

1-110 XACT Development System

XACT
Reference
Guide,

Volumel .o

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Printed in U.S.A.

XACT Reference Guide

XACT Development System

HM2RPM

This Program is Compatible with the Families Indicated.

O XC2000 0 XC3100 O XC3100A M XC4000H
[0 XC2000L [XC3000A [XC4000 O XC7200
O XC3000 [XC3000L M XC4000A [XC7300

The HM2RPM program translates a hard macro (HM) file into an XNF
file that contains a relationally placed macro (RPM). This translation is
necessary for some designs because the XACT 5 software release only

supports the RPM files that replace hard macro files.

Hard macros are encoded files representing segments of XC4000 LCA
logic that are mapped into LCA logic blocks, then placed and routed for
a specific FPGA part. RPMs are a super-set of soft macros that, unlike
hard macros, include standard logic gates that can be simulated. RPMs
group logic into LCA blocks where appropriate. They replace the hard
macro placement information with relative location (RLOC)
constraints. RPMs can include carry logic symbols and BUFT symbols
as well as other CLB-related logic. Unused logic is automatically
trimmed from RPMs so that only the necessary logic is implemented in
the FPGA.

For designs that currently include user-created hard macro files but that
are enhanced or completed with the XACT 5 release, you must translate
the hard macro files into RPM files. Using the HM2RPM translator is
also necessary if you want to move your current hard macro files into a
form that is usable with the Xilinx Unified Libraries. You do not need
to use HM2RPM when you use a schematic entry tool to design new
RPMs with the Unified Libraries, or use the Xilinx-supplied RPM
macros. The standard schematic translator translates the Unified
Libraries’ RPM logic into XNF files that can be merged into the
complete design like any other soft macro.

There are two types of hard macros: macros that you create and macros
that Xilinx supplied with libraries created before the Unified Libraries.
With the XACT 5§ release, Xilinx provides the RPM replacement files
for the hard macro files found in the previously supplied libraries. If
your design uses these libraries and includes Xilinx-supplied hard
macros, you do not need to translate any files or make any
modifications to the symbols that instantiate the hard macros. The
file-flattening program, XNFMerge, automatically finds the
Xilinx-supplied RPM replacement files. If you created your own hard
macro files, you must use the HM2RPM program to convert the hard
macro files and place the new RPM files in a search directory so that
XNFMerge can find them to include in the design.

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) 1-111

Volume 1 — Design Entry and Conversion

When hard macros were generated, the HMGEN program prompted for
default logic values for each of the hard macro’s input pins. If some of
the input pins are left unconnected when the hard macro is placed in a
design, PPR ties those symbol pins to their defined default logic values.
For example, if a counter hard macro in a schematic is left with its CE
pin unconnected with a default logic value of 1, PPR ties this symbol
pin to VCC. No logic is trimmed from this hard macro.

When HM2RPM translates a hard macro, it reads the default logic
value information from the HM file, then creates additional logic that
multiplexes either a default logic value or the input signal to the
symbol pin. XNFPrep trims this additional logic appropriately. If any
input pin on the symbol is left unconnected, XNFPrep trims this
additional logic so that the default logic value is applied. If any input
pin on the symbol is connected, XNFPrep trims this additional logic to
remove the default logic and propagate the input signal correctly.

When XNFPrep trims logic, the trimmed logic and nets contain the
FLOAT_HMINPUT string in their names and can be safely ignored.

User-Created Hard Macros

1-112

You must convert any user-created hard macros into RPMs with the
HM2RPM program when you use these macro symbols in a design.
When you perform this conversion, you must specify whether your
design uses elements from the Unified Libraries or from previous
libraries. By default, HM2RPM outputs an XNF file that is compatible
with schematics generated with previous library elements. The r=true
option generates an XNF file compatible with the Unified Libraries.
This option is described in more detail in the “HM2RPM Options™
section later in this chapter.

You do not need to modify the original user-created hard macro
symbols in your design. Simply run HM2RPM on the HM file to which
each of these symbols points.

When you run XNFMerge on a design containing user-created hard
macro symbols, it automatically searches for the corresponding XNF
file in the following order: in the current directory, in the -d search
directories that you specify, and in the $XACT/data/hmlib directory.
Because of this search order, it is recommended that you place all
user-created RPMs in the current directory or in the -d directory.

XACT Development System

HM2RPM

Before the XACT 5 release, LOC constraints on hard macros applied to
the lower left corner of the CLB. They anchored the corner of the hard
macro structure at a specific location. With the XACT 5 software, the
LOC attribute is still applied to the lower left corner of the CLB if the
DEF=HM attribute is retained on the symbol. However, if the
DEF=HM attribute is removed from the symbol, the software treats the
LOC constraint on the symbol as it does any other soft macro. It
propagates the same LOC constraint to all the symbols in the macro
that do not already have a LOC or RLOC constraint. It does not anchor
the underlying structure of logic. You can use the RLOC_ORIGIN
attribute to anchor RPM logic in the same way as you formerly used
the previous hard macro symbols.

Designs with Elements from Previous Libraries

Hard macro symbols in designs composed of elements from libraries
created before the Unified Libraries retain the DEF=HM attribute
originally attached to them so that XNFMerge can later correctly
process any LOC constraints on the hard macro symbol.

When using symbols from previous libraries, do not use the r=true
option during the conversion. By default, HM2RPM outputs an XNF
file that is compatible with schematics generated with previous library
elements.

Designs with Elements from the Unified Libraries

When using the Unified Libraries symbols, be sure that you use the
r=true option during the conversion of your hard macro HM files so
that HM2RPM will output an XNF file that is compatible with
schematics generated with the Unified Libraries.

Xilinx-Created Hard Macros

XACT Reference Guide

Xilinx-created hard macro symbols retain the DEF=HM attribute
originally attached to them so that XNFMerge can correctly process
any LOC constraints on the hard macro symbol.

You do not need to modify the original Xilinx hard macro symbols in
your design.

When you run XNFMerge on a design containing Xilinx hard macro
symbols, it automatically searches for the corresponding XNF file in
the following order: in the current directory, in the —d search directories
that you specify, and in the $X ACT/data/hmlib directory.

1-113

Volume 1 — Design Entry and Conversion

Designs with Elements from Previous Libraries

The XACT 5 versions of the XNFMerge, XNFPrep, and PPR programs
do not accept hard macros. The hard macros previously found in the
Xilinx hard macro library have already been converted to RPMs and
placed in the $XACT/data/hmlib directory. You can only use the RPMs
in this directory in designs that contain symbols from libraries released
before the Unified Libraries. In these designs, Xilinx hard macros
already point to Xilinx RPM models rather than to HM files, so you do
not need to modify your symbols or convert the Xilinx HM files.
XNFMerge finds and merges these Xilinx RPM files.

Designs with Elements from the Unified Libraries

You can use Xilinx hard macro symbols in a Unified Libraries design,
but it is recommended that you find the equivalent RPM in the Unified
Libraries or create your own at the schematic level. If you use any hard
macro symbols, including Xilinx hard macros, in a Unified Libraries
design, you must convert them into RPMs with the HM2RPM program.

When starting a new design using the Unified Libraries symbols, be
sure that you use the r=true option during the HM2RPM conversion so
that the output XNF file will be compatible with the Unified Libraries.
It is required that you place the XNF file in the current project
directory. If it is not placed there, XNFMerge may find the wrong file
and XNFPrep may fail because the Unified Libraries and earlier
libraries have been mixed.

Table 1-3 summarizes when to use HM2RPM.

Table 1-3 Unified Libraries vs. Previous Libraries

Hard Macro Source

Unified Libraries Previous Libraries

Xilinx-created macros

Use equivalent RPM or run | No action required.
HM2RPM r=true.

User-created macros

Run HM2RPM r=true. Run HM2RPM.

Design Flow

1-114

Figure 1-32 describes where HM2RPM fits into the general Xilinx
design flow.

XACT Development System

XACT Reference Guide

MRG

rer QD

Guide File

- Indicates a report file
Figure 1-32 HM2RPM in XC4000 Design Flow

HM2RPM

1-115

Volume 1 — Design Entry and Conversion

Follow these design steps to process an XC4000 design with hard
macros.

1. Install the XACT 5 or later release of the XNFMerge, XNFPrep,
and PPR programs.

2. Run HM2RPM on all hard macros that you have created. The
“How to Use HM2RPM” section later in this chapter gives you
specific instructions on this procedure.

3. Functionally simulate the design, if desired.

If your design does not have any user-created hard macros,
X-BLOX elements, or Xilinx ABEL elements, you can stay
within your design environment to simulate, provided that all the
elements of your design have simulation models. The Xilinx hard
macros have simulation models.

If your design has user-created hard macros, X-BLOX elements,
or Xilinx ABEL elements, you can use XSimMake to simulate.
XSimMake creates all the simulation models needed for these
elements, which have been processed previously by HM2RPM,
X-BLOX, or Xilinx ABEL, respectively.

4. Run XMake on the top-level design file. XMake automatically
runs XNFMerge.

5. Continue with the rest of the Xilinx design flow.

Files

Input Files
The input to HM2RPM is an HM file containing a hard macro.

Output Files
HM2RPM outputs the following files.

e As adefault, HM2RPM outputs a Version 5 XNF file that is
compatible with the schematic libraries that were created before the
Xilinx Unified Libraries.

1-116 XACT Development System

HM2RPM

When you use the r=true option, HM2RPM outputs a version 5 XNF
file that is compatible with the Unified Libraries.

HMZ2RPM always generates XNF files with CY4 primitives when
carry logic is used. It also always generates a version 5 XNF file
since it contains RLOC information.

¢ The log file contains error, warning, and informational messages
produced by HM2RPM as it processes the design. The name of this
file is hm2rpm.log.

How to Use HM2RPM

This section describes how to use HM2RPM.

Invoking HM2RPM

XACT Reference Guide

You can access HM2RPM through the XACT Design Manager (XDM)
or through the operating system command line.

From XDM

To run HM2RPM from XDM, access XDM according to the
instructions in the “XDM” chapter of this manual.

1. Click on Translate — HM2RPM.

2. Click on any options that you want to set. The available options
are listed in the “HM2RPM Options” section of this chapter.

3. Click on Done.

By default, HM2RPM outputs a version 5 XNF file that is compatible
with the schematic libraries that were created before the Xilinx Unified
Libraries.

From the Command Line
To invoke HM2RPM on the command line, use the following syntax:

hm2rpm inputfile_name . hm outputfile_name .xnf [options]

By default, this syntax outputs a version 5 XNF file that is compatible
with the schematic libraries that were created before the Xilinx Unified
Libraries.

Inputfile_name is the name of the HM input file containing a hard
macro; it must be begin with an alphabetic character. This parameter is
required. If no extension is specified on the input file name, an .hm
extension is used as a default.

1-117

Volume 1 — Design Entry and Conversion

Outputfile_name is the name of the output XNF file. It must begin with
an alphabetic character. If no extension is specified on the output file
name, an .xnf extension is assumed.

Options can be any one of the options listed in the “HM2RPM
Options” section of this chapter.

You must run HM2RPM on each hard macro file that you have created.
When the new XNF file is created, place this file in either the current
working directory or in a search directory that is specified for
XNFMerge. When XNFMerge reads a symbol with the DEF=HM
attribute, it searches for the corresponding XNF file in the following
order: the current directory, the -d search directories specified through
the -d option for XNFMerge, and finally the $XACT/data/hmlib
directory. Do not place your translated macro files into the

$X ACT/data/hmlib directory, which should be reserved for
Xilinx-supplied files.

Creating Unified Libraries-Compatible XNF File

To generate an XNF file that is compatible with schematics generated
with the Unified Libraries, use the following syntax:

hm2rpm inputfile_name . hm outputfile_name .xnf r=true

Obtaining Help

You can obtain help in two ways when using HM2RPM. You can type
hm2rpm .J or hm2rpm -helpall.l. Either command brings up a
description of the options available in HM2RPM and their settings, but
the latter also gives information on the log file and the parameter file.
Any other options entered at the same time as -Helpall are ignored.

HM2RPM Options

1-118

—Helpall

This section describes the options that are available in HM2RPM.

The —Helpall option brings up a description of the HM2RPM options
and their settings, input files, and output files.

Command line syntax: -helpall
Values: None
Default value: None
Applicable family: XC4000

XACT Development System

HMZ2RPM

The r option controls whether the output XNF file is compatible with
schematics generated with the Xilinx Unified Libraries or with previous

libraries.

Command line syntax: r={true|false}
Values: true, false
Default value: false

Applicable family: XC4000

By default, HM2RPM generates an XNF file that is compatible with
designs from the schematic libraries created before the Xilinx Unified
Libraries. If you select r=true, HM2RPM generates an XNF file that is
compatible with the Unified Libraries. If you select r=false, it generates
an XNF file compatible with previous libraries. The default value for
this option is False.

Error Messages

HMZ2RPM can issue the following error messages.

Error 12601 cannot find file name.hm.
HM2RPM cannot find the filename.hm input file.

Error 12602 cCannot open file name.hm.
HM2RPM cannot open the filename.hm input file.

Error 12603 The hard macro file name.hm has been corrupted
and cannot be properly translated.

HM2RPM detected an error in the name.hm hard macro file, which
cannot be translated to an RPM.

XACT Reference Guide 1-119

Volume 1 — Design Entry and Conversion

1-120 XACT Development System

XACT
Reference
Guide,
Volume 1

Index

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01)

Printed in U.S.A.

XACT Reference Guide

XACT Development System

Index

A

ABL2PLD, accessing through XDM, 1 - 20
ABL2XNEF, accessing through XDM, 1 - 20
active window, 1 — 13
ADDR-ERR output, 1 — 66
AKA file, XNFCwvt, 1 — 106, 1 — 108
Annotate, accessing through XDM, 1 - 20
Apollo, 1 - 12
APR, 1-39

accessing through XDM, 1 - 24

purpose, 1 —4
APRLoop, accessing through XDM, 1 - 24
arrow keys, defining in XDM, 1 — 33
ASCTOVST, accessing through XDM, 1 - 26
AUTO parameter, 1 — 85

See also XACT-Performance
Automatic Place and Route program. See APR

BIT file
MakePROM, 1 -5
XMake, 1-3,1-39
bitstreams
configuration options in XMake, 1 — 39
creating, 1 - 5
place in design implementation, 1 — 2
boolean expressions, 1 —2
Browse, accessing through XDM, 1 - 29
BUFT symbols, 1 - 111
bus notation, 1 — 64

C

C2P,1-89
See also XACT-Performance
overlapping specifications, 1 — 90
C2S,1-86
See also XACT-Performance
clock period, 1 - 87
high time, 1 - 87
overlapping specifications, 1 — 87

carry logic symbols, 1 — 111, 1 - 117
CLBs
flattening before mapping in XMake, 1 — 42
LOC constraints, 1 — 113
CleanUp, accessing through XDM, 1 - 21
clock_period parameter, 1 — 87
combinational loops. See XACT-Performance
command files, executing from XDM, 1 - 31
Command Line Interface, 1 — 18
command window, 1 — 11
cursor command, accessing through XDM, 1 — 32
cursors, defining in XDM, 1 — 32
CY4 primitives, 1 - 117

D
daisy chain, 1 -5
DC2P, 1 -89
DC2S,1-86
overlapping specifications, 1 — 87
DEF attribute, 1 — 113, 1 - 118
default timing specifications. See
XACT-Performance
delay, specifying via XACT-Performance. See
XACT-Performance
design entry
boolean expressions, 1 —2
schematics, 1 -2
state expressions, 1 —2
Design Entry & Conversion, programs in, 1 — 3
Design Entry menu, 1 - 19
design flow, 1 —2
design implementation
bitstream creation, 1 —2
mapping, 1 -2
placement, 1 -2
programs in, 1 — 4
routing, 1 -2
design verification
in—circuit verification, 1 — 3
programs in, 1 -5
simulation, 1 -3

XACT Reference Guide, Volume 1 — April, 1994 (0401129 01) Index — 1

XACT Reference Guide

static timing analysis, 1 — 3
DirClean command, XDM, 1 - 30
Directory command, XDM, 1 - 30
Display Manager, 1 — 12
DOS, accessing through XDM, 1 - 30
dos command, XDM, 1 - 30
DP2P, 1 -90
DP2S, 1 -88

E

edit command, accessing through XDM, 1 - 30
ERR output, 1 — 66

executable files. See proglist.xdm

execute command, accessing through XDM, 1 - 31

F

FALLING. See XACT-Performance
family command, accessing through XDM, 1 - 32
FITEQN, accessing through XDM, 1 - 25
FITNET, accessing through XDM, 1 - 25
Fitter menu, 1 - 24
FLOAT_HMINPUT string, 1 - 112
forward tracing

See also XACT-Performance

TS flags, 1 — 96
From-To statement, 1 — 71
function keys, defining in XDM, 1 - 33
functional simulation, 1 - 116

G

graphic interface, 1 - 18

H

hard macros
compatibility with Unified Libraries, 1 - 111,
1-114,1-118
conversion design flow, 1 — 116
definition, 1 — 111
functional simulation, 1 — 116
HM file, 1-112,1-113,1-114,1-116
input pin default values, 1 - 111
LOC constraints, 1 - 113
logic trimming, 1 — 112
processing designs with HM2RPM, 1 - 111

Index -2

user—created, 1 - 111,1-112,1-114
designs with previous library elements,
1-113
designs with Unified Libraries elements,
1-113
Xilinx—created, 1 - 111, 1 - 112, 1 - 113,
1-114
designs with previous library elements,
1-114
designs with Unified Libraries elements,
1-114
hardware description languages, 1 — 2
help command, accessing through XDM, 1 - 31
helpall option, 1 - 118
high_time parameter, 1 — 87
HM files, 1 - 111, 1-112,1-113, 1 - 116,
1-117
HM2RPM
accessing through XDM, 1 - 21
converting user—created hard macros, 1 — 112
designs with previous library elements,

1-113
designs with Unified Libraries elements,
1-113

converting Xilinx—created hard macros, 1 — 113
designs with previous library elements,

1-114
designs with Unified Libraries elements,
1-114

creating logic for unconnected input pins,
1-112

design flow, 1 — 114

error messages, 1 — 117, 1 -119

generating XNF file compatible with previous
libraries, 1 - 117,1- 119

generating XNF file compatible with Unified
Libraries, 1 - 117, 1 - 119

input, 1 - 116, 1 - 117

invoking
command line, 1 - 117
XDM, 1 -117
obtaining help, 1 - 118
options

—helpall, 1 - 118
r1-113,1-114,1-117,1-118,1-119

XACT Development System

outputs
log file, 1 — 117
XNF file, 1 - 113, 1 -114,1-116,1-117,
1-119
purpose, 1 —4, 1 - 111
hm2rpm.log file, 1 — 117
HMGEN, 1 - 111
home directory, 1 — 12

IGNORE. See XACT-Performance

IGNORE parameter, 1 - 101

in—circuit verification, 1 -3

INET, accessing through XDM, 1 —-21

input pins, default values, 1 - 111

IOBs, flattening before mapping in XMake, 1 — 42

J

JED2PLD, accessing through XDM, 1 - 21

K

KeyCursor command, accessing through XDM,
1-33
keydef command, accessing through XDM, 1 - 33

L

LCA device part, 1 — 64
LCA file
LCA2XNF, 1-5
MAP2LCA, 1-4
XMake, 1-3,1-39
LCA2XNF
accessing through XDM, 1 - 26
purpose, 1 -5
LINK parameter, 1 — 100
LOC constraints, 1 — 113
location constraints. See LOC constraints
log file, MemGen, 1 — 60

MAC file, 1 - 60
macros, MAK file, 1 - 50
main screen in XDM, 1 -10,1-16
MAK file, 1 - 38
example, 1 —46, 1 — 49
macros, 1 — 50
purpose, 1 —46
recursion, 1 - 56
syntax, 1 — 46
XMake, 1 - 38
MakeBits
accessing through XDM, 1 - 26

XACT Reference Guide

Index

purpose, 1 — 5
running in XMake, 1 - 41
MAKEIJED, accessing through XDM, 1 - 26
MAKEPRG, accessing through XDM, 1 - 26
MakePROM
accessing through XDM, 1 —27
purpose, 1 - 5
MAP file
MAP2LCA, 1-4
XNFMerge, 1 -4
MAP2LCA, purpose, 1 —4
Map2LCA, accessing through XDM, 1 - 21
mapping, place in design implementation, 1 — 2
MEM file, 1 - 59,1 -60
comments, 1 — 62
data command, 1 - 62
default command, 1 — 62
depth command, 1 - 61
memory characteristics, 1 — 61
symbol command, 1 - 61
type command, 1 - 61
width command, 1 - 61
MemGen
accessing through XDM, 1 - 21
checking address boundaries, 1 — 66
data formats, 1 — 63
base, 1 — 63
value, 1 - 63
example, 1 — 66
inputs, MEM file, 1 - 59, 1 — 60
options
creating OrCAD/SDT symbol, 1 - 64
creating Viewlogic Viewdraw symbol,
1-65
old_library=, 1 — 65
specifying bus notation, 1 — 64
specifying LCA device, 1 — 64
specifying memory depth, 1 — 64
specifying memory type, 1 — 64
specifying memory word width, 1 — 64
options and parameters, 1 — 64
outputs
log file, 1 — 60, 1 — 65
macro files, 1 — 60
OrCAD/SDT LibEdit command files, 1 — 60
XNF files, 1 — 60
purpose, 1 —3,1-59

syntax, 1 — 59
memory

depth, 1 - 61

symbol, 1 - 61

type, 1 - 61

width, 1 - 61

Index — 3

XACT Reference Guide

memory definition file. See MEM file

menu bar, 1 - 10, 1 - 16

menu colors, defining in XDM, 1 - 33

menucolors command, accessing through XDM,
1-33

Motif, 1 - 12

mouse
configuration in XDM, 1 -12,1-18
defining buttons in XDM, 1 - 33

mouse command, accessing through XDM, 1 - 33

mwmrc file, 1 — 12

o

OBUFT components, 1 — 107, 1 — 108

OBUFZ components, 1 — 107, 1 — 108

Openlook, 1 - 12

optimization, place in design implementation, 1 -2
options command, accessing through XDM, 1 - 33
OrCAD, input to XMake, 1 - 38

OrCAD (VST), accessing through XDM, 1 -27
OrCAD/SDT LibEdit command file, 1 — 60
OrCAD/SDT symbol, 1 - 64

OUTFFT components, 1 — 107, 1 - 108

OUTFFZ components, 1 — 107, 1 — 108

P

P2P, 1-90

See also XACT-Performance
P2S,1-88

See also XACT-Performance

overlapping specifications, 1 — 88
PALCONVT, accessing through XDM, 1 - 25
palette command, accessing through XDM, 1 - 34
Part command, accessing through XDM, 1 — 34
Partition, Place, and Route program. See PPR
path types

clock-to-pad, 1 — 86

clock-to-setup, 1 — 86

pad-to-pad, 1 — 86

pad-to-setup, 1 — 86
path-type timing specifications, 1 — 85

basic path types, 1 — 86

clock to pad, 1 - 89

clock to setup, 1 — 86

pad to pad, 1 —90

pad to setup, 1 — 88

resolving conflicts, 1 — 92
PinSave, accessing through XDM, 1 -22
placement, place in design implementation, 1 -2
PlaceRoute menu, 1 -23
PLUSAM, accessing from XDM, 1 -22
PPR, 1-39,1-40

accessing through XDM, 1 - 24

Index -4

forward tracing mechanism, 1 - 93
processing hard macros, 1 — 111, 1 - 114,
1-116
purpose, 1 -5
timing specifications. See XACT-Performance
tying unconnected input pins to default value,
1-111
predefined groups. See XACT-Performance
Profile menu, 1 -9, 1-19
XDM, 1-32
proglist.xdm file, 1 - 8, 1 - 14
PROLINK, accessing through XDM, 1 - 27
PROMs, 1-5

R

roption, 1 - 113,1-114,1-117,1-118,1-119
RAMs,1-3,1-61,1-62,1-64
created by MemGen, 1 — 59
Readprofile command, accessing through XDM,
1-34
relationally placed macros. See RPMs
relative location constraints. See RLOC constraints
report command, accessing through XDM, 1 - 31
RISING. See XACT-Performance
RLOC constraints, 1 — 111, 1 -113
RLOC_ORIGIN attribute, 1 — 113
ROMs,1-3,1-61,1-64
bus representation style, 1 — 59
created by MemGen, 1 — 59
data values
binary, 1 — 62
decimal, 1 - 62
hexadecimal, 1 — 62
octal, 1 — 62
initialization value, 1 — 59
unspecified locations, 1 — 62
routing, place in design implementation, 1 — 2
RPMs
converted from Xilinx—created hard macros,
1-114
definition, 1 — 111
error in converting, 1 — 119
logic trimming, 1 — 111, 1112
RLOC_ORIGIN constraint, 1 — 113
Unified Libraries, 1 — 114

S

Saveprofile command, accessing through XDM,
1-34

ScanDisk command, accessing through XDM,
1-31

schematics
design entry, 1 -2

XACT Development System

specifying timing requirements, 1 — 4
SDT2XNF, accessing through XDM, 1 - 22
Settings command, accessing through XDM,

1-34
simulation, 1 -3
soft macros, 1 - 111

Speed command, accessing through XDM, 1 - 34

speed grades, 1 - 34

state expressions, 1 — 2

static timing analysis, 1 -3,1-35

Sun, 1-13

Sun4,1-12

SYMGEN, 1-19

SYN2XNEF, accessing through XDM, 1 - 22

T

text editor, accessing from XDM, 1 - 30
TIMEGRP attribute, 1 — 77

combining multiple groups, 1 — 78

grouping by exclusion, 1 - 79

placement, 1 — 78

syntax, 1 - 77
TIMEGRP primitive, 1 —77
TIMESPEC primitive, 1 — 70
timing requirements, 1 — 4

See also XACT-Performance
timing specifications. See XACT-Performance
TNMs, 1-73

grouping flip-flops, 1 — 76

incompatible symbols, 1 — 74

on clock pins, 1 -77

on macro symbols, 1 — 74

on primitive symbols, 1 — 73

on signal, 1 - 76

placement on schematic, 1 — 73
Translate HM2RPM command, 1 - 117
Translate menu, 1 - 19
TS attribute, 1 — 70

C2P,1-89

C2S,1-86

delay, 1 -83,1-94

delay time units, 1 — 82

length, 1 -70

P2P,1-90

P2S,1-88

placement, 1 —72

specifying in terms of another, 1 — 83
TS attributes

basic path types, 1 — 86

delay, 1 — 94
TS flags, 1 — 86, 1 -94

attached to clock net, 1 — 96

C2P paths, 1 - 96

XACT Reference Guide

Index

default specifications, 1 — 95
non-default specifications, 1 — 95
on cascaded counters, 1 — 99
P2S path, 1 - 97

placement on schematic, 1 — 95

U

unconnected pins, 1 — 111

Unified Libraries, 1 — 111, 1 - 112, 1 - 113,
1-114,1-116,1-117,1-119

Utilities menu, 1 -19, 1 -29

\'}

Verify menu, 1 —26

version command, accessing through XDM, 1 — 32

Viewdraw macro file, MemGen, 1 — 60
Viewlogic, 1 — 38

input to XMake, 1 — 38
Viewlogic Viewdraw symbol, 1 — 65
VMH2XNF, accessing through XDM, 1 - 27
VSM, accessing through XDM, 1 - 27
VSMUPD, accessing through XDM, 1 - 27

w

warning messages, 1 — 58

window accelerators, 1 - 13

window buttons, 1 — 13

window operations, 1 — 12

WIR2XNEF, accessing through XDM, 1 —22
Workview, 1 — 60

X
X-BLOX, 1 -40

accessing through XDM, 1 — 22
X-BLOX elements, 1 — 116
X-terminal window, 1 —12
X-terminal windows, 1 - 12
X-Windows, in XDM, 1 - 11
XACT Design Editor. See XDE
XACT design flow, 1 -2

design entry, 1 -2

design implementation, 1 -2

design verification, 1 -3
XACT Design Manager. See XDM
XACT environment, 1 -3,1-4,1-5
XACT-Performance, 1 -4, 1-69

AUTO, 1-82

AUTO parameter, 1 — 85

automatic delay, 1 — 82

basic groups, 1 - 70

basic path types, 1 — 86

Index — 5

XACT Reference Guide

C2P, 1-86 xdefaults file, 1 — 12

C2S,1-86 XDelay

clock-to-pad paths, 1 — 89 accessing through XDM, 1 - 28
clock-to-setup paths, 1 — 86 purpose, 1 —5

combinational loops, 1 — 82 XDM

combining multiple groups, 1 —78

default timing specifications, 1 - 72, 1 — 85
difference between path-type and end-point

specifications, 1 — 102
FALLING keyword, 1 —-79
forward tracing, 1 - 93
From-To statement, 1 — 71
group by clock sense, 1 —79
group by exclusion, 1 -79
group by signal name, 1 — 79, 1 - 80
IGNORE, 1-81,1-101
ignore selected paths, 1 — 81
ignoring a path, 1 — 101
LINK, 1 - 100
multiple specifications, 1 — 81
new groups from existing groups, 1 — 77
overlapping specifications, 1 — 81, 1 - 92
P2P, 1 -86
P2S,1-86
pad-to-pad paths, 1 — 90
pad-to-setup paths, 1 — 88
path-type specifications, 1 — 85
path-type timing specifications, sample
schematic, 1 - 101
pattern matching, 1 — 79
predefined groups, 1 — 72
RISING keyword, 1 — 79
sample schematic, 1 — 84
TIMEGREP attribute, 1 — 77
TIMEGRP primitive, 1 - 77
TIMESPEC primitive, 1 - 70
TNMs, 1-73
TS attribute, 1 - 70
placement, 1 — 72
TS flags, 1 - 94
wildcards, 1 - 79
XACTUSER environment variable, 1 - 8
XC2000 designs
mapping all macros in XMake, 1 -39
placing and routing, 1 -4
XC3000 designs, placing and routing, 1 -4
XC4000 designs
placing and routing, 1 - 5
RAM data values, 1 — 62
running X-BLOX in XMake, 1 —40
XChecker, accessing through XDM, 1 - 28
XDE
accessing through XDM, 1 - 24
purpose, 1 -5

Index - 6

accessing, 1 — 9
changing menu colors, 1 — 33
changing mouse button function, 1 — 33
Command Line Interface, 1 — 18
command window, 1 - 11
customizing screen color, 1 — 34
defining function keys, 1 — 33
Design Entry Menu, SYMGEN, 1 - 19
determining device family, 1 — 32
displaying help, 1 -7
displaying installed Xilinx programs, 1 — 32
displaying profile configuration, 1 — 34
executable files, 1 — 8
executing command files, 1 — 31
exiting, 1 - 11
Fitter menu

FITEQN, 1 -25

FITNET, 1 -25

PALCONVT, 1 -25
graphic interface, 1 — 18
invoking HM2RPM, 1 - 117
main screen, 1 - 10,1 - 16
managing design directories, 1 — 30
menu bar, 1 - 10, 1 - 16

menus
Design Entry, 1 — 19
Fitter, 1 — 24

PlaceRoute, 1 - 23
Profile, 1 -19,1-32
Translate, 1 - 19
Utilities, 1 — 19, 1 -29
Verify, 1 -26
mouse configuration, 1 — 18
moving cursor through menus, 1 - 33
navigating through directories, 1 — 30
obtaining help, 1 — 31
Opening Screen, PCs
Directory field, 1 — 11
Family field, 1 - 11
Mouse field, 1 - 11
Part field, 1 - 11
PC systems, 1 - 9
menu display, 1 - 19
obtaining help, 1 — 8
PlaceRoute menu
APR, 1-24
APRLoop, 1 —24
PPR,1-24
XDE, 1 -24

XACT Development System

Profile menu
cursor command, 1 — 32
family command, 1 - 32
KeyCursor command, 1 — 33
keydef command, 1 — 33
Menucolors command, 1 - 33
Mouse command, 1 — 33
Options command, 1 — 33
Palette command, 1 - 34
Part command, 1 — 34
Readprofile command, 1 — 34
Saveprofile command, 1 — 34
Settings command, 1 — 34
Speed command, 1 — 34
proglist.xdm file, 1 — 8,1 - 14
purpose, 1 -3,1-7
reading profile saved in xdm.pro file, 1 — 34
redirecting output to text file, 1 — 31
saving profile to xdm.pro file, 1 — 34
scanning hard disk drive, 1 — 31
selecting default part type, 1 — 34
selecting software default options, 1 — 33
selecting speed grade, 1 — 34
setting cursor type, 1 — 32
suspending, 1 — 11
Translate menu
ABL2PLD, 1-20
ABL2XNF, 1 -20
Anotate, 1 - 20
CleanUp, 1 - 21
HM2RPM, 1 -21
INET, 1-21
JED2PLD, 1 - 21
MAP2LCA, 1-21
MemGen, 1 -21
PinSave, 1 - 22
PLUSASM, 1-22
SDT2XNF, 1 -22
SYN2XNF, 1-22
WIR2XNEF, 1 -22
X-BLOX, 1-22
XDRAFT, 1-23
XEMake, 1 -20
XMake, 1-20
XNFMAP, 1 -23
XNFMerge, 1 -23
XNFPrep, 1 -23
user interface, 1 - 18
Utilities menu
Browse, 1 - 29
DirClean, 1 - 30
Directory, 1 — 30
dos command, 1 — 30
edit command, 1 - 30

XACT Reference Guide

Index

execute command, 1 — 31
help command, 1 - 31
report command, 1 — 31
ScanDisk command, 1 - 31
version command, 1 — 32
Verify menu
ASCTOVST, 1 -26
LCA2XNF, 1-26
MakeBits, 1 —26
MAKEIJED, 1 -26
MAKEPRG, 1 - 26
MakePROM, 1 - 27
ORCAD (VST), 1 -27
PROLINK, 1 -27
VMH2XNEF, 1 - 27
VSM, 1 -27
XChecker, 1 —28
XDelay, 1 —-28
XNF2VST, 1 -28
XNF2WIR, 1 -29

XNFBA, 1-28
XNFCVT, 1 -28
XPP, 1-29

XSimMake, 1 -28
Workstation, Edit Functions, 1 — 13
workstation, menu display, 1 - 19
workstations, 1 — 11

active window, 1 — 13

configuring X-Windows, 1 — 12

mouse configuration, 1 — 12

obtaining help, 1 — 8

window accelerators, 1 - 13

window buttons, 1 - 13

window operations, 1 — 12
X-Windows, 1 — 14
xdm.pro file, 1 —33, 1 -38

XDM Opening Screen
Directory field, 1 — 16
Family field, 1 - 16
Mouse field, 1 - 16
Part field, 1 - 16
XDM opening screen, workstations
Command Line, 1 - 14
Instruction Line, 1 - 14
Status Line, 1 — 14
xdm.pro file, 1 -9, 1 -34,1-38
saving options in, 1 — 33
XDRAFT, accessing through XDM, 1 —23
XEMake, accessing through XDM, 1 - 20
Xilinx ABEL elements, 1 — 116
Xilinx Netlist Format. See XNF
XMake, 1 -116
accessing through XDM, 1 - 20
error messages, 1 —51

Index -7

XACT Reference Guide

HDL file, 1 - 38

input file formats
ASCII HDL file, 1 - 37
MAK file, 1 -37
schematic file, 1 — 37
top-level XNF file, 1 — 37

inputs
MAK files, 1 —-38, 1 -46
schematic drawing files, 1 - 38
XNF files, 1 - 38

MAK file input, 1 - 42

MAP file, 1 - 39

optimized XNF file, 1 — 39

options
creating XFT file, 1 — 41
directing output to screen, 1 —41
disabling MakeBits, 1 — 41
displaying explanations, 1 — 42
flattening design, 1 — 42
generating abbreviated MAK file, 1 —40
generating X-BLOX MAK file, 1 — 40
mapping macro logic, 1 — 39
reprocessing design, 1 — 41
setting part type, 1 —41
translating design to LCA file, 1 — 42

outputs
BIT files, 1 — 39
LCA files, 1 -39
MAK files, 1 —38,1-46

partitioned XNF file, 1 — 39

purpose, 1 -3

schematic file input, 1 — 42

trimmed, flattened XNF file, 1 — 39

XFF file, 1 -39

XG file, 1 -39

XNF file, 1 -39

XMD, Verify menu, VSMUPD, 1 -27
XNF file

converting to different versions, 1 — 108

design verification, 1 — 3

LCA2XNF, 1-5

MemGen, 1 - 60

output of HM2RPM, 1 - 113, 1 - 117

Index - 8

versions, 1 — 105

XNFBA, 1-5

XNFCvt, 1 - 106

XNFMAP, 1 -4

XNFMerge, 1 -4
XNF2VST, accessing through XDM, 1 - 28
XNF2WIR, accessing through XDM, 1 - 29
XNFBA

accessing through XDM, 1 - 28

purpose, 1 — 5
XNFCVT
accessing thorugh XDM, 1 - 28
purpose, 1 — 4
syntax, 1 — 105
XNFCvt

AKA file, 1 — 106, 1 — 108
conversion process, 1 — 108
error messages, 1 — 109
inputs, 1 — 106
name prefixes, 1 — 108
options, 1 — 106
excluding AKA file, 1 — 106
specifying XNF file version, 1 — 106
outputs, 1 — 106
purpose, 1 — 105
syntax, 1 — 105
XNEF file differences, 1 — 106
XNF target file version, 1 — 106
XNFMAP, purpose, 1 —4
XNFMap, accessing through XDM, 1 - 23
XNFMerge
accessing through XDM, 1 —23
processing hard macros, 1 - 111, 1 - 112,
1-113,1-114,1-116,1-118
purpose, 1 — 4
XNFPrep
accessing through XDM, 1 —23
processing hard macros, 1 - 114,1-116
purpose, 1 — 4
trimming hard macro default logic, 1 — 112
XPP, accessing through XDM, 1 - 29
XSimMake, 1 - 116
accessing through XDM, 1 - 28

XACT Development System

	03014095 ================.tif
	03014096.tif
	03014097.tif
	03014098.tif
	03014099.tif
	03014100.tif
	03014101.tif
	03014102.tif
	03014103.tif
	03014104.tif
	03014105.tif
	03014106.tif
	03014107.tif
	03014108.tif
	03014109.tif
	03014110.tif
	03014111.tif
	03014112.tif
	03014113.tif
	03014114.tif
	03014115.tif
	03014116.tif
	03014117.tif
	03014118.tif
	03014119.tif
	03014120.tif
	03014121.tif
	03014122.tif
	03014123.tif
	03014124.tif
	03014125.tif
	03014126.tif
	03014127.tif
	03014128.tif
	03014129.tif
	03014130.tif
	03014131.tif
	03014132.tif
	03014133.tif
	03014134.tif
	03014135.tif
	03014136.tif
	03014137.tif
	03014138.tif
	03014139.tif
	03014140.tif
	03014141.tif
	03014142.tif
	03014143.tif
	03014144.tif
	03014145.tif
	03014146.tif
	03014147.tif
	03014148.tif
	03014149.tif
	03014150.tif
	03014151.tif
	03014152.tif
	03014153.tif
	03014154.tif
	03014155.tif
	03014156.tif
	03014157.tif
	03014158.tif
	03014159.tif
	03014160.tif
	03014161.tif
	03014162.tif
	03014163.tif
	03014164.tif
	03014165.tif
	03014166.tif
	03014167.tif
	03014168.tif
	03014169.tif
	03014170.tif
	03014171.tif
	03014172.tif
	03014173.tif
	03014174.tif
	03014175.tif
	03014176.tif
	03014177.tif
	03014178.tif
	03014179.tif
	03014180.tif
	03014181.tif
	03014182.tif
	03014183.tif
	03014184.tif
	03014185.tif
	03014186.tif
	03014187.tif
	03014188.tif
	03014189.tif
	03014190.tif
	03014191.tif
	03014192.tif
	03014193.tif
	03014194.tif
	03014195.tif
	03014196.tif
	03014197.tif
	03014198.tif
	03014199.tif
	03014200.tif
	03014201.tif
	03014202.tif
	03014203.tif
	03014204.tif
	03014205.tif
	03014206.tif
	03014207.tif
	03014208.tif
	03014209.tif
	03014210.tif
	03014211.tif
	03014212.tif
	03014213.tif
	03014214.tif
	03014215.tif
	03014216.tif
	03014217.tif
	03014218.tif
	03014219.tif
	03014220.tif
	03014221.tif
	03014222.tif
	03014223.tif
	03014224.tif
	03014225.tif
	03014226.tif
	03014227.tif
	03014228.tif
	03014229.tif
	03014230.tif
	03014231.tif
	03014232.tif
	03014233.tif
	03014234.tif
	03014235.tif
	03014236.tif
	03014237.tif
	03014238.tif
	03014239.tif
	03014240.tif
	03014241.tif
	03014242.tif
	03014243.tif
	03014244.tif
	03014245.tif
	03014246.tif

